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Series Editors’ Foreword 

The series Advances in Industrial Control aims to report and encourage technology 
transfer in control engineering. The rapid development of control technology has 
an impact on all areas of the control discipline. New theory, new controllers, 
actuators, sensors, new industrial processes, computer methods, new applications, 
new philosophies , new challenges. Much of this development work resides in 
industrial reports, feasibility study papers and the reports of advanced collaborative 
projects. The series offers an opportunity for researchers to present an extended 
exposition of such new work in all aspects of industrial control for wider and rapid 
dissemination. 

Seminal contributions to the theory of dissipative and passive systems date 
from the early 1970s. Since that time the concepts have been used to design 
controllers for robotic systems and more recently, the thrust by control system 
design has led to some new contributions to the literature. 

A key concept in dissipative systems theory is that of a storage function. This 
may be considered to be an abstraction of the idea of a store of energy within the 
system. The second key concept is a supply rate function and this can be viewed as 
an abstraction of the supply rate of energy to a system. Although the storage 
function and the supply rate function are abstract ideas, their value lies in the fact 
that they can often be identified with physical energy quantities within a real 
system. 

Thus, a dissipative system is one for which the increase in internal energy is no 
greater than the energy supplied to it so the storage function quantifies internal 
energy or stored energy and the supply rate function prescribes the rate of energy 
supplied to the system. A passive system is then a dissipative system having a 
particular form of supply rate function, namely one expressed as an inner product 
of system input and output vectors. 

The power of these dissipative system quantities lies in their links with system 
stability results and their ability to analyse physical systems described by nonlinear 
and linear models. In the field of process control, B.E. Ydstie and colleagues have 
demonstrated deep but natural links between thermodynamical systems and the 
notions of dissipative and passive systems theory. This Advances in Industrial 



x Series Editors’ Foreword 

Control monograph by Jie Bao and Peter Lee makes a major step-forward in the 
literature of the passive systems approach to process control. 

The monograph opens with a chapter on the fundamental ideas of dissipative 
and passive systems which covers the basic definitions and system properties 
before moving on to define passivity indices, and the methods of input feed 
forward and output feedback to create passivity. A gravity-feed tank system and 
heat exchanger process are used to illustrate the fundamental results of the chapter. 

The next chapters explore the implications of the passivity systems approach to 
four key process control topics: robust control design, decentralised control, fault-
tolerant control design and process controllability analysis; one chapter is devoted 
to each topic. These are all topics from the mainstream of process control 
applications and new results and insights are found in all four chapters of the 
volume. Passivity-based robust control designs are compared with H  control 
designs in Chapter 3. Some of the decentralized and block-decentralised passivity-
based robust controllers designed in Chapter 4 use PI controllers reflecting the 
widespread industrial use of these controllers. The fault-tolerant control designs of 
Chapter 5 attempts to achieve fault tolerance whilst avoiding or minimising 
controller redundancy. Finally, considerable academic and industrial interest in 
integrated process and controller design methods has motivated the use of passivity 
concepts in assessing process controllability; this forward-looking material is 
presented in Chapter 6. 

The last chapter of the monograph, Chapter 7, is authored by Katalin Hangos 
and Gábor Szederkényi and this chapter delves into the fundamental links between 
the notions of thermodynamics and the constructs of passivity systems theory. It is 
an illuminating chapter that also considers the ideas of Hamiltonian system models 
and how models of process industry systems are constructed. 

This excellent entry to the Advances in Industrial Control series contains new 
theoretical and applications-related results. It collects together the recent work of 
the authors to permit a cohesive presentation of passivity system theory as applied 
to process control. It is useful to note the wide range of industrial process models 
used in the examples. These include heat exchangers, a continuous stirred-tank 
reactor, distillation column, supercritical fluid extraction process, boiler furnace 
control, high-purity distillation column along with some purely academic 
examples. Many of these process models are standard in the process control 
literature and this facilitates comparisons of the results of the new methods with 
those already found in the published literature. 

The potential readership for the monograph includes engineers and researchers 
from the process industries who may wish to exploit the methods and results 
directly. Research students on Masters and doctoral programmes in process and 
individual control will find the monograph an inspiring and interesting addition to 
their research literature. The wider readership of the control engineering and 
academic community may well find knowledge in this monograph that will transfer 
to other application fields; consequently the monograph is a very welcome new 
addition to the Advances in Industrial Control series. 

M.J. Grimble and M.A. Johnson 
Glasgow, Scotland, U.K. 



Preface

Passive systems are intuitively appealing. Such systems do not “generate”
energy internally, and hence are easier to control and to guarantee that the
controlled response is stable. An understanding of the conditions that govern
when and how any given system may be passive is thus an important approach
in designing control systems. It is only in recent times that interest in using
such approaches in the process industries has emerged.

This book is the first attempt to address passivity-based developments
systematically in process control. It is written for a wide readership, includ-
ing the industrial, engineering and academic communities. We have made an
effort to present the theory backed by intuitive explanations, illustrative ex-
amples and/or case studies in all main chapters. The MATLAB� routines and
controller parameters for all examples as well as a library of functions that
implement the system analysis and control design methods developed in this
book are available at http://www.springer.com/978-1-84628-892-0.

We have assumed that the readers have a working knowledge of engineering
mathematics and that they have had some exposure to linear control theory.
Some more advanced mathematical tools are introduced when necessary. This
book presents the reader with both the conceptual framework and practical
tools for passivity-based system analysis and control.

The authors are grateful for the contribution of Professor Katalin M. Han-
gos and Dr Gábor Szederkényi of the Systems and Control Laboratory, Com-
puter and Automation Research Institute, Hungarian Academy of Sciences,
who have written Chapter 7 of this book. This chapter makes clear the link
between thermodynamics, Hamiltonian systems and passivity and how this
linkage can be exploited in the design of passivity-based control systems.

This book is largely based on our recent research results. We wish to thank
our co-workers and students, Dr Osvaldo Rojas, Dr Wenzhen Zhang, Dr Steven
W. Su, Mr Kwong Ho Chan and Mr Herry Santoso for their contributions on
the projects related to the subject of the present book. Dr Osvaldo Rojas also
helped in proofreading some of the chapters.



xii Preface

We wish to express our gratitude to Professor Michael Johnson for his
inspiration to prepare the book. Most importantly, we would like to thank
our wives, who have continued to support us through the long hours that any
such effort requires.

The University of New South Wales, Australia Jie Bao
University of South Australia, Australia Peter L. Lee
February 2007
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Introduction

Passivity-based process control introduces an emerging area in process control
– control design and system analysis based on the concept of passive systems.
This monograph presents in a systematic approach the recent developments
in robust, decentralized, and fault-tolerant process control, as well as process
controllability analysis and nonlinear process control.

Passive systems are a class of processes that dissipate certain types of phys-
ical or virtual energy, described by Lyapunov-like functions. Passivity theory
has been one of the cornerstones of nonlinear control theory since the 1970s.
However, its application in process control has not been seen until recently.
Defined as an input output property of process systems, the concept of pas-
sivity is particularly useful in stability analysis for interconnected systems.
For example, a strictly passive system with a negative feedback of a passive
system is stable (subject to the zero-state detectability condition). For a given
system, its excess or shortage of passivity (which is called the passivity in-
dex) can be quantified by the feedback and feedforward required to render it
passive. The shortage of passivity of a system (for example, a process) can be
compensated for by the excess of passivity of another system (for example,
a controller) to maintain closed-loop stability. This motivates control design
based on passivity. The theoretical foundation of passive systems is introduced
in Chapter 2.

The concept of passive systems is used in the development of robust process
control. Robustness is an important issue in process control because uncertain-
ties in process models are inevitable and could be significant in many cases.
One can design a robust controller with excessive passivity that compensates
for the “worst case” shortage of passivity of the process in the presence of a
model–plant mismatch. This leads to characterization of process uncertain-
ties in terms of their passivity and corresponding control synthesis methods.
These issues are explored in Chapter 3 of this book.

Chapter 4 discusses a passivity-based decentralized control approach. De-
centralized control is widely used in the process industry. This includes fully
decentralized (multiloop) and block diagonal (multi-unit) control systems.
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The passivity-based conditions are useful in decentralized control because they
can be used to determine the stability of interconnected systems of complex
process systems and decentralized control blocks, according to their passivity
indices and the way they connect to each other. Passivity-based decentralized
control can be less conservative than conventional approaches based on gener-
alized diagonal dominance because it takes into account not only how large the
interactions are but also how the subsystems interact with each other. The
developments include interaction analysis, control structure selection (e.g.,
pairing) and control system design.

In process control applications, failures of control components such as ac-
tuators, sensors or controllers are often encountered. These problems degrade
the performance of the control system and also may induce instability, which
could cause serious safety problems. With the increasing reliance on auto-
matic control systems, fault-tolerant control becomes an important issue in
the process industries. At present, most fault-tolerant control systems are
based on the techniques of having redundancy in key controllers. A backup
controller is employed once the failure of the main controller is detected. How-
ever, the control loop failure may not be detected swiftly and accurately. It
also requires a significant number of redundant control components, which
may increase the system cost to an unacceptable level. Based on the passivity
conditions, a decentralized fault-tolerant approach that requires zero or very
low level redundancy is developed. The basic idea is simple: a strictly passive
multivariable plant can be stabilized by any decentralized passive controller.
The decentralized passive controller remains passive when one or more of its
subloops are arbitrarily detuned or taken out of service. This can be extended
to nonpassive processes where a decentralized controller with excessive pas-
sivity is needed. Combining with existing fault detection and accommodation
techniques, the passivity-based approach can be used to develop fault-tolerant
control systems with minimum redundancy. Chapter 5 provides a description
of fault-tolerant control, its basic framework, extensions and integration with
existing fault detection and accommodation techniques.

Control systems are playing an increasingly important role in manufactur-
ing industries and have become an indispensable part of any process plant.
Therefore, it is very important to ensure that the outcome of process design
can be easily controlled by feedback control systems to achieve effective dis-
turbance rejection (for reduced product variability) and reference tracking
(for fast and smooth transitions from one operating condition to another).
Process controllability can be quantitatively measured by the best achievable
dynamic control performance. A controllability measure which can be used in
the early stages of process design will be very useful. Passive systems are min-
imum phase and thus very easy to control via output feedback, even if they
are highly nonlinear and/or coupled. Such controllers include any multiloop
PI/PID controllers with positive controller gain. Therefore, the controllability
of a process can be inferred from its degree of passivity. Most chemical plants
consist of multiple process units with recycle and bypass streams, which often
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make the controllability analysis very difficult. This chapter presents a prag-
matic approach to controllability analysis based on open-loop process models
and can be used in the early stages of process design.

Recent research has shown the very interesting link between passivity and
thermodynamics. It is possible to determine the inherent passivity of a pro-
cess from its physical properties. Chapter 7 presents recent work in revealing
the connections between thermodynamics, Hamiltonian systems and passivity,
and the applications in stabilization of nonlinear process systems.
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Dissipativity and Passivity

This chapter introduces the concepts of passive and dissipative systems which
lay the foundation of the developments described in this book. Most of the def-
initions follow Willems [138, 139], Byrnes et al. [24] and Sepulchre et al. [110]
with possibly different notations. The implication of passivity is discussed in
terms of the input-output behavior and stability of the process system.

2.1 Concept of Passive Systems

Much of the discussion presented in this chapter is related to system stability.
Therefore, we start with a brief review of the stability of nonlinear systems.
Consider a nonlinear system:

dx
dt

= f (x, u) , (2.1)

where x ∈ X ⊂ Rn and u ∈ U ⊂ Rm are the state and input vector variables,
respectively. The stability of this system is concerned with its free dynamics
when the input variable u = 0. Assume that

f∗ (x) = f (x, 0) , (2.2)

where the components of the n dimensional vector f∗ (x) are local Lipschitz
functions of x, i.e., f∗ (x) satisfies the following Lipschitz condition:

‖f∗ (x1) − f∗ (x2)‖ ≤ L ‖x1 − x2‖ (2.3)

for all x1, x2 in a neighbourhood of x0, where L is a positive constant and ‖·‖
is the Euclidean norm (i.e., ‖x‖ =

√
xT x). The Lipschitz condition guarantees

that
dx
dt

= f∗ (x) (2.4)
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Fig. 2.1. Lyapunov stability

has a unique solution with the initial condition x (0) = x0. A point x∗ ∈ X
is called an equilibrium point of (2.4) if f∗ (x∗) = 0. The equilibrium point
x = 0 is stable if for each ε > 0, δ = δ (ε) > 0 such that ‖x (0)‖ < δ implies
that ‖x (t)‖ < ε for all t ≥ 0 (as shown in Figure 2.1a for X ⊂ R2). This
equilibrium point is said to be asymptotically stable (AS) if it is stable and δ
can be chosen such that ‖x (0)‖ < δ implies that x (t) approaches the origin as
t tends to infinity (as shown in Figure 2.1b). When the origin is asymptotically
stable, the region of attraction is defined as the set of initial points x (0) such
that the solution of (2.4) approaches the origin as t tends to infinity. If the
region of attraction is the entire state-space X , then the origin is globally
asymptotically stable (GAS) [66]. Unlike linear systems, a nonlinear system
may have multiple equilibrium points, of which some are stable and some are
unstable. A sufficient condition for the stability of an equilibrium point is
given by the Lyapunov stability criterion, which can be used to determine the
stability of an equilibrium point without solving the state equation. Let V (x)
be a continuously differentiable (also denoted as C1) scalar function defined
in X that contains the origin. A function V (x) is said to be positive definite
if

V (0) = 0 and V (x) > 0, ∀ x �= 0. (2.5)

It is said to be positive semidefinite if

V (x) ≥ 0, ∀ x. (2.6)

Similarly, a function V (x) is said to be negative definite if V (0) = 0 and
V (x) < 0 for x �= 0 and is said to be negative semidefinite if V (x) ≤ 0 for all
x.

Theorem 2.1 (Lyapunov stability criterion [67]). Let x = 0 be an equi-
librium point of a system described by (2.4). Function f∗ is locally Lipschitz
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and X contains the origin. The origin is stable if there exists a C1 positive def-
inite function V (x) : X → R such that dV (x)

dt is negative semidefinite and it is
asymptotically stable if dV (x)

dt is negative definite, where dV (x)
dt is the derivative

along the trajectory of (2.4), i.e.,

dV (x)
dt

=
∂V (x)

∂x
f∗ (x) . (2.7)

The function V (x) in the above theorem, if it exists, is called a Lyapunov
function.

A stronger type of stability is called exponential stability, which is defined
as follows:

Definition 2.2 (Exponential stability [67]). A system is globally exponen-
tially stable (GES) if and only if there exists a Lyapunov function V (x) such
that

ρ1|x|2 ≤ V (x) ≤ ρ2|x|2, (2.8)

and with zero input,
dV (x(t))

dt
≤ −ρ3|x|2, (2.9)

where ρi > 0, i = 1, 2, 3 are suitable scalar constants. If these conditions hold,
it follows that there exists some constant ρ ≥ 0 such that with x(0) = x0,

|x(t)| ≤ ρ|x0|e−ρ3t/2 ∀ t ≥ 0. (2.10)

If the above condition is valid for x only in a neighbourhood of x = 0, the
system is locally exponentially stable (LES).

First introduced by Popov [95], the concept of passive systems originally
arose in the context of electrical circuit theory. A network consisting of only
passive components, e.g., inductors, resistors and capacitors, does not generate
any energy and therefore is stable (e.g., [6, 49]). In the early 1970s, Willems
[138, 139] developed a systematic framework for dissipative systems, including
passive systems, by introducing the notation of a storage function and a supply
rate. Passivity, dissipativity and relevant stability conditions are cornerstones
of modern control theory. In this section, an introduction to passive systems
is presented through a very simple example of a gravity tank, followed by
rigorous definitions.

Example 2.3 (Gravity tank). Consider the gravity under flow tank system
illustrated in Figure 2.2. Assume that the input is the inlet volumetric flow rate
u = Fi (t), the state variable is the liquid level x (t) and the output variable is
the liquid pressure y = p (t) = ρgx (t). (Liquid pressure measurement is often
used in level control.) Suppose that the outlet is flowing under the influence
of gravity, i.e.,

Fo (t) = Cv

√
x (t), (2.11)
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where Cv denotes the valve coefficient and Fo is the mass flow rate. The mass
balance is given by

ρA
dx (t)

dt
= ρFi (t) − ρFo (t) = ρFi (t) − ρCv

√
x (t), (2.12)

leading to

dx (t)
dt

= −Cv

A

√
x (t) +

1
A

Fi (t) ,

y (t) = p (t) = ρgx (t) ,
(2.13)

where A is the cross-sectional area of the tank and ρ is the density of the
liquid. Denote the mass in the tank as m. Half of the potential energy stored
in the tank is given by the following equation:

S (t) = S(x (t)) =
1
2
m (t) gx (t) =

1
2

[ρAx (t)] gx (t) =
1
2
Aρgx2 (t) . (2.14)

The inlet flow into the system increases the potential energy in the tank. The
increment of potential energy per unit time can be represented by a function
of the input and output:

w(t) = y (t)u (t) = ρgFi(t)x(t). (2.15)

The rate of change of the potential energy is given by taking the derivative
along the trajectory of x (t):

dS (t)
dt

=
∂S

∂x

dx
dt

= Aρgx (t)
[

1
A

(
Fi (t) − Cv

√
x (t)

)]
(2.16)

= −Cvρgx (t)
√

x (t) + ρgFi (t)x (t) (2.17)
< w (t) . (2.18)

Note that in the range of definition of x, the first term of (2.17) is always
negative. Therefore the rate of change of the stored energy in the tank is
less than that supplied to it by the inlet flow rate (represented by w (t)). As
such, the tank system “dissipates” its potential energy through both the inlet
flow (Fi) and the liquid pressure p, which is a function of both the input and
output. This is called a dissipative system. Because the potential energy S (t)
is a positive definite function of the state variable x (t), it can be treated as a
Lyapunov function. When Fi (t) = 0,

dS (t)
dt

< 0, ∀ x �= 0. (2.19)

Therefore, the equilibrium x = 0 is asymptotically stable (AS). If the outlet
valve is completely shut off (i.e., Cv = 0), then the energy flow into the tank is
totally stored. In this case, this process becomes lossless and the equilibrium
x = 0 is stable.
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Fig. 2.2. A gravity tank system

Comparing (2.17) with (2.19), it can be seen that by introducing the energy
function, (2.17) gives the stability of a free system (with zero input) and also
how its input and output affect the state variable. If we generalize the energy
function to any nonnegative function of the states, then we can define a class
of nonlinear processes. Consider the following nonlinear system:

H :

{
ẋ = f (x, u)
y = h(x, u),

(2.20)

where x ∈ X ⊂ R
n, u ∈ U ⊂ Rm and y ∈ Y ⊂ Rm are the state, input and

output variables, respectively, and X , U and Y are state, input and output
spaces, respectively. The representation x(t) = φ(t, t0, x0, u) is used to denote
the state at time t reached from the initial state x0 at t0.

Definition 2.4 (Supply rate [138]). The supply rate w(t) = w(u(t), y(t))
is a real valued function defined on U × Y , such that for any u (t) ∈ U and
x0 ∈ X and y(t) = h(φ(t, t0, x0, u)), w(t) satisfies∫ t1

t0

|w(t)| dt < ∞ (2.21)

for all t1 ≥ t0 ≥ 0.

Definition 2.5 (Dissipative systems [138]). System H with supply rate
w(t) is said to be dissipative if there exists a nonnegative real function S(x) :
X → R+, called the storage function, such that, for all t1 ≥ t0 ≥ 0, x0 ∈ X
and u ∈ U ,

S(x1) − S(x0) ≤
∫ t1

t0

w(t)dt, (2.22)

where x1 = φ(t1, t0, x0, u) and R+ is a set of nonnegative real numbers.
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The above condition states that a system is dissipative if the increase in
its energy (storage function) during the interval (t0, t1) is no greater than
the energy supplied (via the supply rate) to it. If the storage function is
differentiable, i.e., it is C1, then we can write (2.22) as

dS (x (t))
dt

≤ w(t). (2.23)

The interpretation is that the rate of increase of energy is no greater than the
input power.

According to the above definition, a storage function has to be positive
semidefinite. The next definition describes the notion of available storage, the
largest amount of energy that can be extracted from the system given the
initial condition x (0) = x:

Definition 2.6 (Available storage [138]). The available storage, Sa of a
system H with supply rate w, is the function Sa : X → R+ defined by:

Sa (x) � sup
x(0)=x
u(t)∈U
t1>0

{
−
∫ t1

0

w (u (t) , y (t)) dt
}

. (2.24)

The available storage is nonnegative, since Sa (x) is the supremum over a
set of values including the zero element. The available storage function plays
an important role in dissipative/passive systems. If a system is dissipative,
the available storage function Sa(x) is finite for each x ∈ X . Moreover, any
possible storage function S(x) satisfies

0 � Sa(x) � S(x) (2.25)

for each x ∈ X . If Sa is a continuous (C0) function, then Sa itself is a possible
storage function. Conversely, if Sa (x) is finite for every x ∈ X , then the
system is dissipative with respect to the supply rate w(t).

The supply rate can be any function defined on the input and output space
that satisfies (2.21). When a bilinear supply rate is adopted, passive systems
can be defined as:

Definition 2.7 (Passive systems [24]). A system is said to be passive if it
is dissipative with respect to the following supply rate:

w (u (t) , y (t)) = uT (t) y (t) , (2.26)

and the storage function S (x) satisfies S(0) = 0.

Two extreme cases of passive systems are lossless and state strictly passive
systems:
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Definition 2.8 (Lossless systems [24]). A passive system H with storage
function S (x) is said to be lossless if for all t1 ≥ t0 ≥ 0, x0 ∈ X and u ∈ U ,

S (x) − S (x0) =
∫ t1

t0

yT (t)u (t) dt. (2.27)

Definition 2.9 (State strictly passive systems [24]). A passive system
H with storage function S (x) is said to be state strictly passive if there exists
a positive definite function V : X → R+ such that for all t1 ≥ t0 ≥ 0, x0 ∈ X
and u ∈ U ,

S (x) − S (x0) =
∫ t1

t0

yT (t)u (t) dt −
∫ t1

t0

V (x (t)) dt. (2.28)

This definition is referred to as strict passivity in [24]. Here we define it
as state strict passivity to discriminate it from other types of strict passivity
discussed later in this book, such as strict input passivity and strict output
passivity.

In the tank system example, the storage function is the total potential
energy stored in the tank system, given by (2.14). The supply rate given by
(2.15) is the inner product of the input and output. Therefore, the tank system
is state strictly passive when the outlet valve is open and is lossless when the
outlet valve is closed. Storage functions are not limited to physical energies.
Any nonnegative real functions defined on state variables can be understood
as a type of abstract energy, like the Lyapunov functions. They are potential
candidates for the storage functions. For example, for the tank system, if we
choose the output as the liquid level x, then the supply rate w (t) = Fi (t)x (t).
With the storage function S (x) = 1

2Ax2, it is obvious that

dS (x)
dt

= −Cvx (t)
√

x (t) + Fi (t) x (t) < w (t) , (2.29)

which shows that the process is passive (more precisely, state strictly passive).
In this case, the physical meanings of the storage function and supply rate
are not explicit, making it more difficult to determine its passivity directly
from our understanding of the mass and energy balance. However, the process
possesses all the useful properties of passive systems that we are going to
discuss in the next section.

2.2 Properties of Passive Systems

2.2.1 Stability of Passive Systems

In the tank example, we can see that the concept of passivity implies stability if
a positive definite storage function is used. Because the storage function is only
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required to be positive semidefinite in Definition 2.5, stability is not always
ensured by passivity. For example, if a system has two states x = [x1, x2]

T

and the storage function is positive semidefinite, e.g., S (x) = 1
2x

2
1, then pas-

sivity with this storage function does not imply the stability of x2. In this
case, additional conditions on zero-state detectability and observability are
required:

Definition 2.10 (Zero-state observability and detectability [24]). A
system as given in (2.20) is zero-state observable (ZSO) if for any x ∈ X,

y (t) = h(φ(t, t0, x, 0)) = 0, ∀ t ≥ t0 ≥ 0 implies x = 0, (2.30)

and the system is locally ZSO if there exists a neighbourhood Xn of 0, such
that for all x ∈ Xn, (2.30) holds. The system is zero-state detectable (ZSD) if
for any x ∈ X,

y (t) = h(φ(t, t0, x, 0)) = 0, ∀ t ≥ t0 ≥ 0 implies lim
t→∞φ(t, t0, x, 0) = 0,

(2.31)
and the system is locally ZSD if there exists a neighbourhood Xn of 0, such
that for all x ∈ Xn, (2.31) holds.

With the definition of zero-state detectability (ZSD), the link between
passivity and Lyapunov stability can be established:

Theorem 2.11 (Passivity and stability [110]). Let a system H (as rep-
resented in (2.20)) be passive with a C1 storage function S (x) and h (x, u) be
C1 in u for all x. Then the following properties hold:

1. If S (x) is positive definite, then the equilibrium x = 0 of H with u = 0 is
Lyapunov stable.

2. If H is ZSD, then the equilibrium x = 0 of H with u = 0 is Lyapunov
stable.

3. If in addition to either Condition 1 or Condition 2, S (x) is radially un-
bounded (i.e., S (x) → ∞ as ‖x‖ → ∞), then the equilibrium x = 0 in the
above conditions is globally stable (GS).

It can be also found that if system H is state strictly passive with a
positive definite storage function, then the equilibrium x = 0 with u = 0 is
asymptotically stable. The boundedness of the storage function implies the
boundedness of the state variables. However, passivity tells more than just
stability. It relates the input and output to the storage function and thus
defines a set of useful input-output properties, which are explained in the
next section.

2.2.2 Kalman–Yacubovich–Popov Property

One of the most important properties of passive systems is related to the
following definition:
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Definition 2.12 (Kalman–Yacubovich–Popov property [24]). Consider
a control affine system without throughput (as a special case of the system in
(2.20)):

H :

{
ẋ = f (x) + g (x) u
y = h (x) ,

(2.32)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm and y ∈ Y ⊂ Rm. It is said to have the
Kalman–Yacubovitch–Popov (KYP) property if there exists a C1 nonnegative
function S (x) : X → R+, with S (0) = 0 such that

LfS (x) =
∂S (x)
∂x

f (x) ≤ 0, (2.33)

LgS (x) =
∂S (x)
∂x

g (x) = hT (x) , (2.34)

for each x ∈ X.

The term LfS (x) = ∂S(x)
∂x f (x) is called the Lie derivative, which is defined

as follows:

Definition 2.13 (Lie derivative). Given a C1 nonlinear scalar function
S (x) : Rn → R and a vector function:

f (x) = [f1 (x) , f2 (x) , · · · , fn (x)]T ∈ R
n → R

n, (2.35)

on a common domain X ⊂ Rn. The derivative of S (x) along f is defined as

LfS (x) =
∂S (x)
∂x

f (x) =
n∑

i=1

∂S (x)
∂xi

fi (x) . (2.36)

The repeated Lie derivative is defined as

Lk
fS (x) =

∂
(
Lk−1

f S (x)
)

∂x
f (x) , (2.37)

with L0
fS (x) = S (x).

Proposition 2.14 ([57]). A system H which has the KYP property is pas-
sive, with a storage function S (x). Conversely, a passive system having a C1

storage function has the KYP property.

For the tank system in Example 2.3, f (x) = −Cv

A

√
x, g (x) = 1

A and
h (x) = ρgx (t). With the storage function defined in (2.14), it is easy to
verify that the tank system has the KYP property. Because the liquid level
x (t) ≥ 0,

LfS (x) = −ρgCvx (t)
√

x (t) ≤ 0, (2.38)

LgS (x) = Aρgx (t)
1
A

= ρgx (t) = y (t) . (2.39)
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For a linear time invariant (LTI) system, there exists a quadratic storage
function S (x) = xT Px (with a positive definite matrix P ), leading to the
following linear version of the KYP condition:

Proposition 2.15 ([139]). Consider a stable LTI system:1

ẋ = Ax + Bu

y = Cx + Du,
(2.40)

where x ∈ Rn, u ∈ Rm and y ∈ Rm. This system is passive if and only if there
exist matrices P,L ∈ Rn×n, Q ∈ Rm×n and W ∈ Rm×m with P > 0, L > 0
(positive definite) such that

ATP + PA = −QTQ− L,

BTP − C = −WTQ,

WTW = D + DT .

(2.41)

For systems with relative degree 0 (i.e., D �= 0), the above condition can
be represented using a linear matrix inequality (LMI), which is often referred
to as the positive-real lemma:

Lemma 2.16 (Positive-real Lemma [21]). A stable LTI system given in
(2.40) with D �= 0 is passive if and only if there exists a positive definite
matrix P such that: [

ATP + PA PB − CT

BT P − C −D −DT

]
< 0. (2.42)

When D = 0, the above condition is reduced to

ATP + PA < 0, (2.43)

BT P = C. (2.44)

Equations (2.43) and (2.44) are the linear versions of (2.33) and (2.34), re-
spectively.

2.2.3 Input-Output Property

Obviously, while (2.33) is related to the stability, (2.34) defines an input-
output property. The input-output property of passive systems is called posi-
tive realness :

1 In this book, the linear system given in (2.40) is said to be stable if Re[λi(A)] < 0,
∀ i = 1, . . . , n. The system is actually asymptotically stable according to Sec-
tion 2.1.
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Definition 2.17 (Positive real systems [24]). A system is said to be pos-
itive real if for all t1 ≥ t0 ≥ 0, u ∈ U ,∫ t1

t0

yT (t)u(t)dt � 0, (2.45)

whenever x (t0) = 0.

The initial condition of the state variable x0 = x (t0) = 0 (consequently
S (x0) = 0) is assumed because positive realness is only an input-output
property, which says nothing about the states. Clearly, passive systems are
positive real. To tell whether a positive real system is passive, we need an
additional reachability condition:

Definition 2.18 (Reachability and controllability [138]). The state-
space of a dynamic system H (as in (2.20)) is said to be reachable from x−1

if for any x ∈ X, there exists a t−1 ≤ 0 and u ∈ U such that

x = φ (0, t−1, x−1, u) . (2.46)

It is said to be controllable to x1 if for any x ∈ X, there exists a t1 ≥ 0 and
u ∈ U such that

x1 = φ (t1, 0, x, u) . (2.47)

A positive real system is passive if any state is reachable from the origin
and Sa is at least continuous (C0). A thorough treatment of passive systems
from the perspective of input-output systems can be found in [32]. In the case
of linear systems, positive realness and passivity are synonyms, provided that
the system is detectable.

The input-output relationship is often more conveniently represented by
system operators. The system operator is a mapping defined on signal spaces.
For example, system H with the input and output signals u (t) and y (t) can
be understood as a mapping from u to y (with certain initial conditions on
the state variable x (t)). In this case, H : u (t) �−→ y (t) is a system operator
and the system output can be represented as

y (t) = Hu (t) . (2.48)

The mapping from y (t) to u (t) is referred to as the inverse of H , denoted as
H−1. For a vector signal function on time f (t) = [f1 (t) , . . . , fm (t)]T , where
fi (t) are scalar functions and t ≥ 0, the “size” of the signal can be quantified
by using norms. Here we introduce the so-called 2-norm:

Definition 2.19 (2-norm of a signal). The 2-norm of a vector time-domain
signal f (t) ∈ Rm is defined as

‖f‖2 �
[

m∑
i=1

∫ ∞

0

f2
i (t) dt

] 1
2

=

√∫ ∞

0

fT (t) f (t) dt. (2.49)
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Define the inner product as follows:

〈f, g〉 �
∫ ∞

0

f (t)T
g (t) dt. (2.50)

Then (2.49) can be written as

‖f‖2 =
√
〈f, f〉. (2.51)

The set of vector functions of f : R+ → Rm which have a bounded 2-norm,
i.e.

‖f‖2 < ∞, (2.52)

are called the Lm
2 space (the superscript indicates the dimension). This is

a Hilbert space (a linear space with inner product). The Lm
2 space can be

extended to allow functions that are unbounded, when t → ∞, by introducing
the truncation operator:

Definition 2.20 (Truncation operator [130]). Let f : R
+ → R

m. Then
for each T ≥ 0, the function fT (t) is defined by

fT (t) =

{
f(t), 0 ≤ t < T

0, t ≥ T,
(2.53)

and is called the truncation of f to the interval [0, T ].

The space that consists of all functions f such that fT (t) ∈ Lm
2 is called the

extension of Lm
2 , denoted as Lm

2e. Now the definition of input-output stability
can be given as follows:

Definition 2.21 (Input-output stability [130]). Let H : Lm
2e → Lp

2e. Sys-
tem H is said to be L2 stable if Hu ∈ Lp

2 for any u ∈ Lm
2e.

The mapping H is said to have finite L2 gain if there exist finite constants
γ and b such that for all T ≥ 0,

‖(Hu)T ‖2 ≤ γ ‖uT ‖2 + b, ∀ u ∈ Lm
2e. (2.54)

Using the above definition, we can define passivity from the perspective of the
input-output property:

Definition 2.22 ([130]). Let H : u ∈ Lm
2e �→ y ∈ Lm

2e. Then system H is
passive if there exists some constant β such that

〈Hu, u〉T = 〈y, u〉T ≥ β, ∀ u ∈ Lm
2e, ∀ T ≥ 0. (2.55)

The above inequality is equivalent to the positive real condition given in
(2.45), with the assumption t0 = 0. The introduction of constant β is due
to the fact that x (t0) = 0 is not assumed in (2.55). One possible case is
β = S (x (0)), where S (x) is the storage function.

Because both (2.45) and (2.55) are symmetrical in terms of u and y, the
following proposition is obvious:
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Proposition 2.23 ([116]). Consider a positive real system H which maps u
to y. Its inverse (denoted H−1) which maps y to u is also positive real if it
exists.

For stable linear systems, the above input-output property can be defined
on the transfer functions by introducing positive real transfer functions.

Definition 2.24 (Positive real transfer function [139]). A transfer func-
tion G(s) is positive real if

• G(s) is analytic in Re(s) > 0;
• G(jω) + G∗(jω) ≥ 0 for any frequency ω that jω is not a pole of G(s). If

there are poles p1, p2, . . . , pq of G(s) on the imaginary axis, they are non-
repeated and the residue matrix at the poles lim

s→pi

(s−pi)G(s) (i = 1, . . . , q)

is Hermitian and positive semidefinite.

Transfer function G(s) is said to strictly positive real (SPR) if

• G(s) is analytic in Re(s) ≥ 0;
• G(jω) + G∗(jω) > 0 ∀ ω ∈ (−∞,+∞).

Furthermore G(s) is said to be extended strictly positive real (ESPR) if it
is SPR and G(j∞) + G∗(j∞) > 0 [123].

Here, G∗(jω) is the complex conjugate transpose of G(jω).

Theorem 2.25 ([139]). A linear system as given in (2.40) is passive (or
strictly passive) if and only if its transfer function G(s) := C(sI−A)−1B+D
is positive real (or strictly positive real).

The above theorem (together with Definition 2.24) forms an input-output
version of the positive-real lemma in the frequency domain. The above the-
orem is often used as the definition of linear passive systems. According to
Theorem 2.25, G1 (s) = 1

s+1 is a strictly passive system and G2 (s) = 1
s is a

passive system. It is worth pointing out that any PID controller

K (s) = kc

[
1 +

1
τIs

+ τDs

]
, kc > 0, (2.56)

is passive. So is any multiloop PID controller.

2.2.4 Phase-related Properties

The above input-output property implies another interesting characteristic
of passive systems – they are phase bounded. This is very obvious for SISO
passive systems, because the condition G(jω)+G∗(jω) ≥ 0 is then reduced to
Re (G (jω)) ≥ 0, which means that the real part of their frequency response is
always nonnegative. This is what the term “positive real” originally referred
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to. Clearly, the phase shift of a stable SISO passive system in response to a
sinusoidal input is always within [−90◦, 90◦] and the phase shift of a SISO
strictly passive system is always within (−90◦, 90◦).

The above statement is also true for multi-input multi-output (MIMO) lin-
ear systems. Here we adopt the following phase definition for MIMO systems
given by Postlethwaite et al.:

Definition 2.26 (Phase of MIMO LTI systems [96]). Consider an
MIMO LTI system with a transfer function G(s) ∈ C

m×m. Perform the polar
decomposition on its frequency response:

G(jω) = X(jω)Λ(jω)V ∗(jω)
= [X(jω)V ∗(jω)] [V (jω)Λ(jω)V ∗(jω)] = U(jω)H(jω),

(2.57)

where Λ(jω) is an m ×m diagonal, real and nonnegative matrix; X(jω) and
V (jω) are unitary matrices. U(jω) = X(jω)V ∗(jω) is also a unitary matrix
and H = V (jω)Λ(jω)V ∗(jω) is a Hermitian matrix. The phase of the system
at frequency ω is defined as the principal arguments of the eigenvalues of
U(jω).

Theorem 2.27 (Phase condition for MIMO LTI strictly passive sys-
tems [13]). Consider an MIMO LTI system with a transfer function G(s) ∈
Cm×m. If the system is strictly passive, then its phase shift lies in the open
interval (−90◦, 90◦) for any real ω.

The proof of the above theorem is given in Section B.1. If the frequency
response of a stable linear system has a phase shift within [−90◦, 90◦] for all
frequencies, this system also satisfies both of the following conditions:

1. it is minimum phase;
2. the difference between the degree of the denominator polynomial and the

degree of the numerator polynomial (i.e., the relative degree) is less than
2.

This can be illustrated by a simple SISO case. Consider a stable and
minimum phase transfer function G (s) = p(s)

q(s) with G (0) > 0, where the
numerator polynomial p (s) is of mth order and the denominator polynomial
q (s) is of nth order. Because G (s) has only left half plane (LHP) zeros and
poles at frequency ω = ∞, the phase shift will be 90◦(n − m). Therefore,
for the system to be phase bounded by [−90◦, 0◦] at all frequencies, it must
satisfy n −m < 2. (A positive phase shift will occur when G (0) < 0.)

Phase is not defined for nonlinear systems. However, the above phase-
related conditions can be extended to nonlinear systems. The relative degree
can be understood as the number of times one has to differentiate the output
to have the input explicitly appearing. Therefore, we can define the relative
degree for nonlinear systems as follows:
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Definition 2.28 (Relative degree [61]). A SISO control affine nonlinear
system

ẋ = f (x) + g (x) u
y = h (x) ,

(2.58)

is said to have relative degree r at point x0 if

1. LgL
k
fh (x) = 0 for all x in a neighbourhood of x0 and all k < r − 1;

2. LgL
r−1
f h (x0) �= 0,

where Lk
fh (x) is the kth order Lie derivative of h along f .

A multivariable nonlinear control affine system as in the following equa-
tion:

ẋ = f (x) +
q∑

j=1

gj (x) uj ,

yi = hi (x) , i = 1, . . . , p,

(2.59)

has a vector relative degree given by {r1, r2, · · · , rp} at a point x0 if

1. LgiL
k
fhi (x) = 0, i = 1, . . . , p, k = 0, . . . , ri − 2 for all x in a neighbour-

hood of x0.
2. The characteristic matrix C (x), given by

C (x) =

⎡⎢⎢⎢⎢⎣
Lg1L

r1−1
f h1 (x) Lg2L

r1−1
f h1 (x) · · · LgpL

r1−1
f h1 (x)

Lg1L
r2−1
f h2 (x) Lg2L

r2−1
f h2 (x) · · · LgpL

r2−1
f h2 (x)

...
...

. . .
...

Lg1L
rp−1
f hp (x) Lg2L

rp−1
f hp (x) · · · LgpL

rp−1
f hp (x)

⎤⎥⎥⎥⎥⎦
p×p

is nonsingular at x0. The total relative degree is defined as r =
∑p

i=1 ri.

For the linear SISO system ẋ = Ax + Bu, y = Cx, the relative degree
is equal to the difference between the degree of the denominator polyno-
mial and the degree of the numerator polynomial of the transfer function
H(s) = C(sI −A)−1B of the system. To extend the concept of minimum
phase systems to nonlinear systems, we need to look at the zero dynamics:

Definition 2.29 (Zero dynamics). Consider the system in (2.32) with the
constraint y = 0, i.e.,

ẋ = f (x) + g (x)u,
0 = h (x) .

(2.60)

The constrained system (2.60) is called the zero-output dynamics, or briefly,
the zero dynamics.
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If the matrix Lgh (0) � ∂h(x)
∂x g (x)

∣∣∣
x=0

of the system in (2.32) is nonsin-

gular and the distribution spanned by the vector fields g1 (x) , · · · , gm (x) is
involutive in a neighbourhood of x = 0, then there exists new local coordi-
nates (z, y) under which the system can be represented as the so-called normal
form:

ż = q (z, y) ,
ẏ = b (z, y) + a (z, y)u.

(2.61)

The zero dynamics of system (2.32) are given by

ż = q (z, 0) . (2.62)

Denote q (z, 0) by f0 (z). Then, the function q (z, y) can be expressed in the
form

q (z, y) = f0 (z) + p (z, y) y, (2.63)
where p (z, y) is a smooth function (see [24]).

Definition 2.30 (Minimum phase nonlinear systems [24]). Consider
the system in (2.32). Suppose that Lgh (0) is nonsingular. Then the system is
said to be:

1. minimum phase if its zero dynamics are asymptotically stable in a neigh-
bourhood of z = 0;

2. weakly minimum phase if there exists a positive differentiable function
W (z) with W (0) = 0, such that

∂W (z)
∂z

f0 (z) ≤ 0 (2.64)

in a neighbourhood of z = 0.

Similarly, we can define globally minimum phase and globally weakly min-
imum phase if the normal form and minimum phase are global. Now we are
in the position to study the phase-related properties of nonlinear passive sys-
tems.

Theorem 2.31 ([24]). Consider system H given in (2.32). Assume that
rank {Lgh (x)} is constant in a neighbourhood of x = 0. If system H is passive
with a C2 storage function S (x) which is positive definite, then

1. Lgh (0) is nonsingular and H has relative degree {1, · · · , 1}.
2. The zero dynamics of H exist locally at x = 0, and H is weakly minimum

phase.

Because system H in consideration does not have a feedthrough term,
its relative degree could not be below {1, · · · , 1}. A passive SISO nonlinear
system has a relative degree of 1 or 0 (if there is a feedthrough term). The
above theorem shows that nonlinear passive systems have phase-related input-
output properties similar to those their linear counterparts possess. These
properties imply output feedback stability conditions which will be discussed
in the next section.
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Fig. 2.3. Interconnections of passive systems

2.3 Interconnection of Passive Systems

The phase-related properties of passive systems imply important output feed-
back stability conditions, which can be used to determine the stability of
networks of interconnected systems. A passive system is very easy to control
via output feedback. For example, a linear passive system (e.g., G (s) = 1

s )
can be stabilized by any proportional only controller with a positive gain.
Similarly, we have the following stability condition for nonlinear systems:

Theorem 2.32. For a nonlinear passive system H given in (2.32), a propor-
tional only output feedback control law u = −ky asymptotically stabilizes the
equilibrium x = 0 for any k > 0, provided that H is ZSD.

Proof. Assume that H is passive with storage function S (x). For u = −y, the
time derivative of S satisfies

Ṡ (x) ≤ −kyT y < 0, ∀ y �= 0. (2.65)

The bounded solution of ẋ = f (x,−y) is confined in {x|h (x) = 0}. If H is
ZSD, then x → 0.

The output feedback stability condition is not limited to static feedback:

Theorem 2.33 (Interconnections of passive systems). Suppose that sys-
tems H1 and H2 are passive (as shown in Figure 2.3). Then the two systems,
one obtained by the parallel interconnection, and the other obtained by feedback
interconnection, are both passive. If systems H1 and H2 are ZSD and their
respective storage functions S1(x1) and S2(x2) are C1, then the equilibrium
(x1, x2) = (0, 0) of both interconnections is stable.

Proof. Passivity: Because H1 and H2 are passive, there exist two positive
semidefinite storage functions S1 (x1) and S2 (x2) such that
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Si (xi (t1)) − Si (xi (t0)) ≤
∫ t1

t0

uT
i yidt, i = 1, 2, (2.66)

where x1, x2 are the state variables of H1 and H2, respectively. Define
x =

[
xT

1 , xT
2

]T and S (x) = S1 (x1) + S2 (x2). Note that S (x) is positive
semidefinite and

S (x (t1)) − S (x (t0)) ≤
∫ t1

t0

(
uT

1 y1 + uT
2 y2

)
dt. (2.67)

For the parallel interconnection, u = u1 = u2 and y = y1 + y2. Therefore,

S (x (t1)) − S (x (t0)) ≤
∫ t1

t0

uT ydt. (2.68)

For the feedback case, u2 = y1 and u1 = r − y2:

S (x (t1)) − S (x (t0)) ≤
∫ t1

t0

rT y1dt. (2.69)

Therefore, both interconnections are passive.
If systems H1 and H2 are ZSD, the equilibrium (x1, x2) = (0, 0) of both
interconnections is Lyapunov stable, according to Theorem 2.11.

The above conditions can be extended to partial parallel and feedback
connections:

Proposition 2.34 (Partial interconnection of passive systems). Con-
sider systems H1 : u1 �−→ y1 and H2 : u2 �−→ y2, where u1 =

[
uT

11, u
T
12

]T ,

u2 =
[
uT

21, u
T
22

]T , y1 =
[
yT
11, y

T
12

]T , y2 =
[
yT
21, y

T
22

]T . If systems H1 and H2

are passive, then the two systems, one obtained by partial parallel intercon-
nection, and the other obtained by partial feedback interconnection (as shown
in Figure 2.4), are both passive. If systems H1 and H2 are ZSD and their
respective storage functions S1(x1) and S2(x2) are C1, then the equilibrium
(x1, x2) = (0, 0) of both interconnections is stable.

Proof. Similar to the proof of Theorem 2.33, because H1 and H2 are passive,
there exist two positive semidefinite storage functions S1 (x1) and S2 (x2) such
that

Si (xi (t1)) − Si (xi (t0)) ≤
∫ t1

t0

uT
i yidt, i = 1, 2, (2.70)

where x1, x2 are the state variables of H1 and H2, respectively. Define
x =

[
xT

1 , xT
2

]T and S (x) = S1 (x1) + S2 (x2). Note that S (x) is positive
semidefinite and

S (x (t1)) − S (x (t0)) ≤
∫ t1

t0

(
uT

1 y1 + uT
2 y2

)
dt

=
∫ t1

t0

(
uT

11y11 + uT
12y12 + uT

21y21 + uT
22y22

)
dt.

(2.71)
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Fig. 2.4. Partial interconnected systems

For the partial parallel interconnection, define u3 = u12 = u21, y3 = y12 +
y21. The overall system inputs and outputs are u =

[
uT

11, u
T
3 , uT

22

]T and y =[
yT
11, y

T
3 , yT

22

]T , respectively. Therefore,

S (x (t1)) − S (x (t0)) ≤
∫ t1

t0

(
uT

11y11 + uT
3 y3 + uT

22y22

)
dt

=
∫ t1

t0

yTudt.

(2.72)

For the feedback case, u12 = −y21 and u21 = y12. The overall system inputs
and outputs are u =

[
uT

11, u
T
22

]T and y =
[
yT
11, y

T
22

]T , respectively. Then

S (x (t1)) − S (x (t0)) ≤
∫ t1

t0

(
uT

11y11 − yT
21y12 + yT

12y21 + uT
22y22

)
dt

=
∫ t1

t0

(
uT

11y11 + uT
22y22

)
dt =

∫ t1

t0

yTudt.

(2.73)
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Therefore, both interconnections are passive. If systems H1 and H2 are ZSD,
from Theorem 2.11, the equilibrium (x1, x2) = (0, 0) of both interconnections
is Lyapunov stable.

As a result, if a process is passive, it can be stabilized at the equilibrium
point (x = 0) by any passive controller, even if it is highly nonlinear and/or
highly coupled. For example, the gravity tank can be stabilized by any PID
controller with a positive controller gain. The controller gain can be arbitrarily
large to reduce the response time without causing instability. This motivates
stability analysis and control design based on passivity. The above stability
condition can be further extended by introducing the notion of a passivity
index.

2.4 Passivity Indices

2.4.1 Excess and Shortage of Passivity

To extend the passivity-based stability conditions to more general cases for
both passive and nonpassive systems, we need to define the passivity indices
that quantify the degree of passivity. The passivity indices can be defined in
terms of an excess or shortage of passivity.

Let system H , as given in (2.32), be passive with a C1 storage function
S (x). Consider a static feedfoward yff = −νu (ν > 0) such that the overall
system H̃ has the output ỹ = y − νu (as shown in Figure 2.5a). Because the
feedforward is static, its state-space is void. Therefore, the storage function
of the overall system remains S (x). If H̃ is also passive, then,

S (x (t1)) − S (x (t0)) ≤
∫ t1

t0

uT ỹdt =
∫ t1

t0

(
uT y − νuTu

)
dt. (2.74)

This is equivalent to the condition that H is dissipative with respect to the
supply rate w (u, y) = uT y − νuTu. In this case, system H is said to have
excessive input feedforward passivity of ν, denoted as IFP(ν). The feedforward
system −νI is not passive because

∫ t1
t0

uT yffdt =
∫ t1

t0
−νuTudt < 0, violating

the positive real condition. From this example, it can be seen that the excess of
passivity in H can compensate for the shortage of passivity in the feedforward
system. Similarly, if H is nonpassive, but it is dissipative with respect to the
supply rate w (u, y) = uT y + νuTu (ν > 0), then system H + νI is passive. In
this case, H lacks input feedforward passivity, denoted as IFP(−ν).

Another situation is the negative feedback interconnection (as shown in
Figure 2.5b). Let H̃ be the closed-loop system of H with a positive feedback
ρI (ρ > 0). Assume that H̃ is passive with a C1 storage function S (x), then,

S (x (t1)) − S (x (t0)) ≤
∫ t1

t0

rT ydt =
∫ t1

t0

(
uT y − ρyT y

)
dt. (2.75)
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This is equivalent to the dissipativity of system H with respect to the supply
rate w (u, y) = uT y − ρyT y. In this case, H is said to have excessive output
feedback passivity of ρ, denoted as OFP(ρ). If H is not passive, but it is
dissipative with respect to the supply rate w (u, y) = uT y+ρyT y (ρ > 0), then
system H can be rendered passive by a negative feedback ρI. In this case, H is
said to lack output feedback passivity, denoted as OFP(−ρ). Mathematically,

Definition 2.35 (Excess/shortage of passivity [110]). Let H : u �−→ y.
System H is said to be:

1. Input feedforward passive (IFP) if it is dissipative with respect to supply
rate w (u, y) = uT y − νuTu for some ν ∈ R, denoted as IFP(ν).

2. Output feedback passive (OFP) if it is dissipative with respect to supply
rate w (u, y) = uT y − ρyT y for some ρ ∈ R, denoted as OFP(ρ).

In this book, a positive value of ν or ρ means that the system has an excess
of passivity. In this case, the process is said to be strictly input passive or
strictly output passive, respectively. Clearly, if a system is IFP(ν) or OFP(ρ),
then it is also IFP(ν − ε), or OFP(ρ− ε) ∀ ε > 0.

The IFP and OFP can also be defined on the input-output version of
passivity:

Definition 2.36 ([130]). Let H : Lm
2e → Lm

2e. System H is strictly input
passive if there exist β and δ > 0 such that

〈Hu, u〉T ≥ δ ‖uT ‖2
2 + β, ∀ u ∈ Lm

2e, T ≥ 0. (2.76)

H is strictly output passive if there exist β and ε > 0 such that

〈Hu, u〉T ≥ ε ‖(Hu)T ‖2
2 + β, ∀ u ∈ Lm

2e, T ≥ 0. (2.77)
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A strictly output passive system has a finite L2 gain [130]. Furthermore,
a system that has excessive OFP with a C1 storage function has a stable
equilibrium x = 0 when u = 0, provided that the system is ZSD. This can be
seen from the following:

Ṡ ≤ uT y − ρyT y = uT y − ρhT (x)h (x)

< −ρhT (x) h (x) < 0, ∀ h (x) �= 0 and u = 0.
(2.78)

Following a proof similar to Theorem 2.32, x → 0 when t → ∞.
IFP and OFP systems have the following scaling property:

Proposition 2.37 (IFP/OFP Scaling [110]). For systems H and αH,
where α is a constant, the following statements are true:

1. If H is OFP(ρ), then αH is OFP
(

1
αρ
)
.

2. If H is IFP(ν), then αH is IFP(αν).

Note that the strict passivity definition for linear systems given in The-
orem 2.25 is the IFP plus the stability condition, not the linear version of
state strict passivity for nonlinear systems. More precisely, a linear system is
strictly passive if it is stable and IFP(ν), ν > 0.

Example 2.38. To illustrate the definition of IFP and OFP, let us consider a
linear integrating system:

H :

{
ẋ = u

y = x.
(2.79)

This system is lossless (passive but not strictly passive). By definition, system
H with a positive feedforward ν:

H1 :

{
ẋ = u

y = x + νu
(2.80)

will have excessive IFP of ν. This can be seen by using a storage function
S (x) = 1

2x
2:

Ṡ = xu = yu− νu2. (2.81)

From an input-output point of view, H (s) = 1/s is passive, and

H1 (s) = H (s) + ν = (νs + 1) /s (2.82)

has excessive IFP of ν. According to Theorem 2.25, H1 (s) is not strictly
passive because it is not stable.

Similarly, H (s) with a negative feedback of ρ (ρ > 0),

H2 (s) =
1
s

1 + ρ 1
s

=
1

s + ρ
, (2.83)
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will be OFP(ρ) and also strictly passive. Linear strictly output passive systems
may not be strictly passive (due to the fact that strict passivity for linear
systems requires strict IFP). For example,

H3 (s) =
s

s + 1
(2.84)

is OFP(1), but it is not strictly passive because H3 (0) + H∗
3 (0) = 0.

More general supply rates can be used to define simultaneous IFP and
OFP. Consider a system H with both input feedforward νI and output feed-
back ρI, as shown in Figure 2.6. If the overall system H̃ is passive, then system
H is dissipative with respect to the supply rate:

w (u, y) = (1 + ρν) yTu− νuTu− ρyT y. (2.85)

In the above discussion, the feedforward and feedback are assumed to be static
and decentralized. A more general case is when they are arbitrary nonlinear
multivariable (thus vector) functions, e.g.

w (u, y) = yTu− νT (u)u− ρT (y) y, (2.86)

where v (u) = [v1 (u) , · · · vm, (u)]T and ρ (u) = [ρ1 (u) , · · · , ρm (u)]T .
Another generalization of the supply rate was given by Hill and Moylan

[57]:

w (u (t) , y (t)) = yT (t)Qy (t) + 2uT (t)Sy (t) + uT (t)Ru (t) , (2.87)

where Q,R, S ∈ Rm×m are constant weighting matrices, with Q and R sym-
metrical. This corresponds to multivariable but linear and static feedforward
and feedback required to render the process system passive.
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2.4.2 Passivity Indices for Linear Systems

For a stable linear system with a transfer function G (s), the IFP index, de-
noted as ν (G (s)), can be calculated based on the KYP lemma. If G (s) has
excessive IFP, then there exists a largest ν > 0 such that the process with the
feedforward −νI is positive real, i.e.,

G (jω) − νI + [G (jω) − νI]∗ > 0, ∀ ω. (2.88)

Therefore, we can have the following definition:

Definition 2.39. The input feedforward passivity index for a stable linear
system G (s) is defined as2

ν (G (s)) � 1
2

min
ω∈R

λ (G (jω) + G∗ (jω)) , (2.89)

where λ denotes the minimum eigenvalue.

If ν is negative, then the minimum feedforward required to render the
process passive is νI. The above definition also gives a numerical approach
for calculating the IFP index. For linear systems, it is possible to define a
tighter IFP index conveniently by employing a frequency-dependent passivity
index:

Definition 2.40 ([11]). The input feedforward passivity index for a stable
linear system G (s) at frequency ω is given by

νF (G (s) , ω) � 1
2

λ (G (jω) + G∗ (jω)) . (2.90)

By using the above definition, we can specify the condition that a dynamic
feedforward Gff (s) needs to satisfy so that G (s) + Gff (s) is passive. For a
stable process G (s), a stable Gff (s) should be chosen such that

νF (Gff (s) , ω) + νF (G (s) , ω) > 0 ∀ ω ∈ R. (2.91)

It is more difficult to calculate the OFP index numerically because it in-
volves feedback loops. If a process G (s) is minimum phase (therefore, G−1 (s)
exists and is stable. G (s) does not need to be stable), then with a positive
feedback of ρI, the closed-loop system is

Gcl (s) = G (s) [I − ρG (s)]−1 =
[
G (s)−1 − ρI

]−1

. (2.92)

According to Proposition 2.23, Gcl (s) is passive if and only if

G−1
cl (s) = G (s)−1 − ρI (2.93)

is passive. Therefore, the OFP index of G (s) is the IFP index of G−1 (s). We
can have the following definition:
2 This definition is similar to the passivity index proposed in [135], except that in

[135] a positive value of ν implies that the system lacks passivity.
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Definition 2.41. The output feedback passivity index for a minimum phase
linear system G (s) is defined as

ρ (G (s)) � 1
2

min
ω∈R

λ
(
G−1 (jω) +

[
G−1 (jω)

]∗)
. (2.94)

The OFP index at frequency ω is given by

ρF (G (s) , ω) � 1
2

λ
(
G−1 (jω) +

[
G−1 (jω)

]∗)
. (2.95)

For processes that are nonminimum phase and unstable, we need both
feedback and feedforward to render the process passive. In this case, the IFP
and OFP indices are dependent. Special passivity indices need to be defined
so that they can be conveniently computed and used in system analysis and
control design. We will introduce these indices in other chapters.

2.5 Passivation

To render a process passive via either feedback or feedforward is called passi-
vation. This is possible if the process lacks either IFP or OFP. Because passive
systems are stable and easy to control, passivation is often a useful step in
control design. For example, we may passivate a process and then stabilize
the passivated system with a (strictly) passive controller (e.g., a static output
feedback controller given in Theorem 2.32).

2.5.1 Input Feedforward Passivation

Many stable processes can be passivated by a static feedforward. For exam-
ple, a linear system G1 (s) = 1−s

s3+s2+s+1 can be passivated by a static unit

feedforward because G (s) = G1 (s) + 1 = s3+s2+2
s3+s2+s+1 is minimum phase, has

a relative degree of 0 and is positive real.
Consider a control affine process H as in (2.32). Assume that the process

has a globally stable equilibrium at x = 0 with a Lyapunov function V (x).
Use V (x) as a storage function, then

dV (x)
dt

=
∂V (x)

∂x
f (x) +

∂V (x)
∂x

g (x)u ≤ ∂V (x)
∂x

g (x) u. (2.96)

As shown in Figure 2.5a with the feedforward νI, ỹ = h (x) + νu. Then
ỹTu = hT (x)u + νuTu. As long as there exists a ν such that

νuTu >

[
∂V (x)

∂x
g (x) − hT (x)

]
u, (2.97)

V̇ (x) ≤ ỹTu.



30 2 Dissipativity and Passivity

This result can be generalized to dynamic feedforward systems. Any sta-
ble control affine process (of which a Lyapunov function can be found) can
be passivated with a feedforward dynamic system. As shown in Figure 2.3a,
assume that a system

H1 :

{
ẋ = f1 (x) + g1 (x) u1

y1 = h1 (x) ,
(2.98)

is nonpassive but has a globally stable equilibrium point x = 0 with a Lya-
punov function V (x). A feedforward system H2 can be designed to passivate
H1. One way to design such a feedfoward passivater is to assume that the
passivated system H has the same state equation as that of H1 and find an
appropriate output function y (t) = h (x) such that H is passive. According
to the KYP lemma (Proposition 2.14), if we use V (x) as a storage function,
then, the condition LfV (x) = ∂V (x)

∂x f1 (x) ≤ 0 is always satisfied. If we choose

h (x) =
[

∂V (x)
∂x g1 (x)

]T

, then H is passive. The feedforward system H2 can be
obtained by subtracting y from y1:

H2 :

⎧⎨⎩ẋ = f1 (x) + g1 (x)u2

y2 =
[

∂V (x)
∂x g1 (x)

]T
− h1 (x) .

(2.99)

Such a feedforward will stabilize the zero dynamics of H1 (so that H is made
weakly minimum phase) and reduce its relative degree to no greater than
{1, · · · , 1}.

For linear systems, the feedforward system can be easily obtained using
the linear version of the KYP lemma. Detailed discussion will be given in
later chapters. However, it is not possible to passivate an unstable process
with feedforward because the feedforward does not affect the free dynamics of
the process (when u = 0). Such systems can only be passivated via feedback.

2.5.2 Output Feedback Passivation

Passivation of unstable processes is a topic which attracted much interest be-
cause it can be an effective approach to stabilization of nonlinear processes.
Most research work is concerned with passivation by state feedback. A thor-
ough development of this topic can be found in [24]. A control affine system
given in (2.32) is said to be feedback passive (or feedback equivalent to a passive
system) if there exists a state feedback transformation [24]:

u = α (x) + β (x) v, (2.100)

with invertible β (x) such that the system

ẋ = f (x) + g (x)α (x) + g (x)β (x) v,
y = h (x) ,

(2.101)
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is passive. The condition for feedback passivity is given in the following the-
orem:

Theorem 2.42 (State feedback passivity [24]). Consider the control
affine system in (2.32). Assume rank

(
Lgh (x)|x=0

)
= m (where m is the

number of outputs). Then this system is feedback passive with a C2 positive
definite storage function S (x) if and only of it has relative degree {1, · · · 1, }
at x = 0 and is weakly minimum phase.

Clearly, the above condition says that we cannot render a nonminimum
phase system or a system with a relative degree larger than 1 passive via
feedback, because a passive system needs to be weakly minimum phase and
have a relative degree no greater than 1, but the relative degree and the zero
dynamics cannot be altered by feedback [69]. In this case, passivation is only
possible via feedforward.

For the output feedback case, an additional condition is required:

Theorem 2.43 (Output feedback passivity).

1. Necessary condition: If the system in (2.32) can be rendered passive with
a C2 storage function S (x), then it has relative degree {1, · · · , 1} at x = 0
and is weakly minimum phase, and Lgh (x)|x=0 is symmetrical and posi-
tive definite.

2. Sufficient condition: The system in (2.32) can be rendered locally passive
with a C2 positive definite storage function S (x) by an output feedback if
its Jacobian linearization at x = 0 is minimum phase and ∂h(x)

∂x g (x)
∣∣∣
x=0

is symmetrical and positive definite.

To get some intuition from the above conditions, let us look at the case of
linear systems. For a linear system

ẋ = Ax + Bu,

y = Cx,
(2.102)

Lgh (x) =
∂h (x)
∂x

g (x) = CB. (2.103)

Theorem 2.42 says the linear system is feedback passive if it (1) has a relative
degree of 1 (due to the assumption D = 0, the relative degree cannot be
0) (2) is weakly minimum phase (it may have zeros in the LHP and on the
imaginary axis) and (3) rank (CB) = m. Note that if CB is nonsingular, then
the linear system has a relative degree of 1. Therefore, Condition (3) implies
Condition (1) for linear systems.

Clearly, any state feedback cannot change any of the above conditions,
because with a state feedback, u = r − Kx (r is an exogenous input such as
reference), the closed-loop system will be
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ẋ = (A−BK)x + Br,

y = Cx.
(2.104)

For example, systems like G1 (s) = 1−s
s+1 cannot be passivated by any state

feedback controllers.
For output feedback passivity, CB must also be (1) symmetrical and

(2) positive definite. The first condition implies that the input and output
of a process need to be properly paired. The second condition imposes the
limitation on the sign of the steady-state gain. For example, a linear sys-
tem G2 (s) = −1

−s+1 can be stabilized by a negative feedback controller K (s)
with negative steady-state gain, but cannot be made positive real because the
closed-loop system G2(s)

1+G2(s)K(s) will have a negative steady-state gain.

2.6 Passivity Theorem

We have shown the stability condition of passive systems in feedback in The-
orem 2.33. By using the notions of strict input passivity and strict output
passivity, asymptotic stability conditions for interconnected passive systems
can be derived. These conditions are called the Passivity Theorem. The sim-
plest version of the Passivity Theorem is as follows:

Theorem 2.44 (Passivity Theorem [110]). Assume that systems H1 and
H2 are ZSD and dissipative with C1 storage functions S1 (x1) and S2 (x2).
Then the equilibrium (x1, x2) = (0, 0) of their feedback connection (as shown
in Figure 2.7a) with r ≡ 0 is asymptotically stable (AS) if

1. H1 and H2 are strictly output passive; or,
2. H1 and H2 are strictly input passive; or,
3. H1 is GAS and strictly input passive and H2 is passive.

If storage functions S1 (x1) and S2 (x2) are radially unbounded, then the
feedback connection is globally asymptotically stable (GAS).

Proof. The proof of the above theorem can be found in [110]. Here we provide
a simplified version of the proof to clarify the intent. The storage function for
the closed-loop is chosen as S (x1, x2) = S1 (x1) + S2 (x2).

1. Since H1 and H2 are strictly output passive, there exist ρ1, ρ2 > 0 such
that

Ṡ1 (x1) ≤ yT
1 u1 − ρ1y

T
1 y1, (2.105)

Ṡ2 (x2) ≤ yT
2 u2 − ρ2y

T
2 y2. (2.106)

Then,

Ṡ (x1, x2) ≤ yT
1 u1 − ρ1y

T
1 y1 + yT

2 u2 − ρ2y
T
2 y2. (2.107)
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Fig. 2.7. Extended passivity condition

Because u1 = −y2, u2 = y1,

Ṡ (x1, x2) ≤ −yT
1 y2 − ρ1y

T
1 y1 + yT

2 y1 − ρ2y
T
2 y2

= −ρ1y
T
1 y1 − ρ2y

T
2 y2 < 0, ∀ y1, y2 �= 0.

(2.108)

The bounded solution of (x1, x2) is confined in { (x1, x2)| (y1, y2) = (0, 0)}.
Because H1 and H2 are ZSD, (x1, x2) → (0, 0).

2. Since H1 and H2 are strictly input passive, there exist ν1, ν2 > 0 such
that

Ṡ1 (x1) ≤ yT
1 u1 − ν1u

T
1 u1, (2.109)

Ṡ2 (x2) ≤ yT
2 u2 − ν2u

T
2 u2. (2.110)

Then

Ṡ (x1, x2) ≤ yT
1 u1 − ν1u

T
1 u1 + yT

2 u2 − ν2u
T
2 u2

≤ −ν1y
T
2 y2 − ν2y

T
1 y1 < 0, ∀ y1, y2 �= 0.

(2.111)

Similar to Part 1, (x1, x2) → (0, 0).
3. In this case, there exists a ν1 > 0 such that

Ṡ1 (x1) ≤ yT
1 u1 − ν1u

T
1 u1, (2.112)

Ṡ2 (x2) ≤ yT
2 u2, (2.113)

Ṡ (x1, x2) ≤ yT
1 u1 − ν1u

T
1 u1 + yT

2 u2

= −ν1y
T
2 y2 < 0, ∀ y2 �= 0.

(2.114)

Because Ṡ is bounded only by yT
2 y2, the bounded solution of (x1, x2) is

confined in {(x1, x2)| y2 = 0} and u1 = 0. Because H1 is GAS and H2 is
ZSD, (x1, x2) → (0, 0).
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If storage functions S1 (x1) and S2 (x2) are radially unbounded, then all
the above results hold globally.

The input-output version of the Passivity Theorem can be presented as
follows:

Theorem 2.45 ([130]). Consider the closed-loop system shown in Figure 2.7a
with H1, H2 : Lm

2e → Lm
2e. Assume that for any r ∈ Lm

2 there are solutions
u1, u2 ∈ Lm

2e. If

1. H1 is passive and H2 is strictly input passive; or,
2. H1 is strictly output passive and H2 is passive,

then, u2 = y1 = H1 (u1) ∈ Lm
2 , i.e., the closed-loop system from r to y1 is

L2 stable.

Furthermore, if the input-output stability of systems H1 and/or H2 is
assumed, we have

Theorem 2.46 ([130]). Consider the closed-loop system shown in Figure 2.7a
with H1, H2 : Lm

2e → Lm
2e. Assume for any r ∈ Lm

2 that there are solutions
u1, u2 ∈ Lm

2e. If

1. H1 is passive and H2 is strictly input passive and L2 stable; or
2. Both H1 and H2 are strictly output passive,

then, y1, y2 ∈ Lm
2 , i.e., both of the closed-loop systems from r to y1 and

from r to y2 are L2 stable.

For linear systems, Condition 1 of the above theorem simply means:

Proposition 2.47 (Passivity theorem for linear systems). Consider two
LTI systems H1 and H2 in negative feedback configuration, as shown in Fig-
ure 2.7a. The closed-loop system is asymptotically stable if H1 is strictly pas-
sive and H2 is passive.

This can be clearly seen from the example of two SISO systems H1 and
H2. In this case, the phase shifts of H1 and H2 lie within (−90◦, 90◦) and
[−90◦, 90◦], respectively. Therefore, the total phase shift of the open-loop sys-
tem never reaches −180◦, producing no critical frequency in the open-loop
Bode diagram. According to the Nyquist-Bode stability condition, the closed-
loop system is stable regardless of the amplitude ratio of H1 (jω)H2 (jω). The
system has infinite gain margin.

By using the concepts of excess and shortage of passivity, we can extend the
above results further to general (possibly nonpassive) systems. Assume that
system H1 in Figure 2.7a is GAS but lacks IFP, e.g., is IFP(−ν1), ν1 > 0, then
a feedforward of νI (where ν = ν1 + ε and ε is an arbitrarily small positive
number) will render H1 strictly input passive, as depicted in Figure 2.7b. To
make the feedback system equivalent to the original system in Figure 2.7a,
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a positive feedback of νI is added to H2. According to Theorem 2.44, the
equilibrium (x1, x2) = (0, 0) of the closed-loop system is GAS if H2 with
positive feedback is passive, i.e., H2 has excessive output feedback passivity of
ν. Similarly, a shortage of output feedback passivity of H2 can be compensated
for by excessive input feedforward passivity of H1 so that the closed-loop
system is GAS. More rigorously, we have:

Theorem 2.48 ([110]). Assume that in the feedback interconnection shown
in Figure 2.7a, H1 is GAS and IFP(ν) and the system H2 is ZSD and OFP(ρ).
Then (x1, x2) = (0, 0) is AS if ν +ρ > 0. If, in addition, the storage functions
of H1 and H2 are radially unbounded, then (x1, x2) = (0, 0) is GAS.

If the systems are characterized by a more general supply rate as in (2.86),
the above condition can be further extended:

Theorem 2.49 ([110]). Assume that the systems H1 and H2 are dissipative
with respect to the following supply rates:

wi(ui, yi) = uT
i yi − ρT

i (yi)yi − νT
i (ui)(ui), i = 1, 2, (2.115)

where ui, yi ∈ Rm, i = 1, 2. Furthermore assume that they are ZSD and
that their respective storage functions S1(x1) and S2(x2) are C1. Then the
equilibrium (x1, x2) = (0, 0) of the feedback interconnection in Figure 2.7a is

1. stable, if νT
1 (v)v + ρT

2 (v)v ≥ 0 and νT
2 (v)v + ρT

1 (v)v ≥ 0, ∀ v ∈ Rm;
2. asymptotically stable, if νT

1 (v)v + ρT
2 (v)v > 0 and νT

2 (v)v + ρT
1 (v)v > 0,

∀ v ∈ Rm and v �= 0.

One special case of the supply rates is νi(ui) = ν̄iui and ρi (yi) = ρ̄iyi,
where ν̄i and ρ̄i are scalar constants. In this case,

νT
1 (v)v + ρT

2 (v)v = ν̄1v
T v + ρ̄2v

T v = (ν̄1 + ρ̄2) vT v, (2.116)

νT
2 (v)v + ρT

1 (v)v = ν̄2v
T v + ρ̄1v

T v = (ν̄2 + ρ̄1) vT v. (2.117)

Then, the equilibrium (x1, x2) = (0, 0) of the feedback interconnection is

1. stable if ν̄1 + ρ̄2 ≥ 0 and ν̄2 + ρ̄1 ≥ 0;
2. asymptotically stable if ν̄1 + ρ̄2 > 0 and ν̄2 + ρ̄1 > 0.

Another special case is

ν1(v) = ρ1 (v) = 0, v2 (v) = νv and ρ2 (v) = ρv. (2.118)

This leads to the following stability condition:

Proposition 2.50. Assume that H1 is passive (i.e., dissipative with respect
to the supply rate w1 = uT

1 y1) and H2 is dissipative with respect to the supply
rate of w2 = uT

2 y2 − ρyT
2 y2 − νuT

2 u2. Assume that systems H1 and H2 are
ZSD and their respective storage functions S1(x1) and S2(x2) are C1. Then,
the equilibrium (x1, x2) = (0, 0) of the feedback interconnection in Figure 2.7a
is asymptotically stable if ρ > 0 and ν > 0.

This condition does not require system H1 to be AS.
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2.7 Heat Exchanger Example

Some process systems are inherently passive (after proper rescaling of the in-
puts and/or outputs). One of the examples is the heat exchanger, a device
built for efficient heat transfer from one fluid to another. The fluids are sep-
arated by a solid wall so that they never mix. Heat exchangers are widely
used in air conditioning, refrigeration, space heating, power production, and
in virtually every chemical plant.

Consider a single tube-in-shell heat exchanger as depicted in Figure 2.8,
where cooling water is used to remove heat from a process stream. The volu-
metric flow rates of the process (hot) and service (cold) streams are vh and vc.
The inlet and outlet temperatures of the hot and cold streams are Thi, Tho,
Tci and Tco, respectively. Strictly speaking, a tube-in-shell heat exchanger is
a distributed parameter system (which can be represented by partial differen-
tial equations), because the temperatures of the hot and cold streams in the
tube are functions of the location in the tube. To simplify our discussion, an
approximate lumped parameter model given by Hangos et al. [54] is adopted.
The model was built under the following assumptions:

1. Constant volume of the hot and cold streams in the heat exchanger (Vh

and Vc);
2. Constant physicochemical properties, including density of the hot and cold

streams (ρh and ρc) and their specific heat (cPh and cPc);
3. Constant heat transfer coefficient U and area A;
4. Both hot and cold streams are well mixed and the temperatures of the

hot and cold streams inside the tube are approximated by the outlet tem-
peratures Tho and Tco.

The state equations of the heat exchanger can be developed based on
energy balance [54]:

Ṫco (t) =
vc (t)
Vc

[Tci (t) − Tco (t)] +
UA

cPcρcVc
[Tho (t) − Tco (t)] , (2.119)

Ṫho (t) =
vh (t)
Vh

[Thi (t) − Tho (t)] +
UA

cPhρhVh
[Tco (t) − Tho (t)] . (2.120)

The inputs of the above process are the inlet temperatures and flow rates of
the hot and cold streams. The outputs and states are the outlet temperatures.
Depending on the choices of the manipulated variables, different models can
be derived.

Example 2.51 (Linear model). If the inlet temperatures are manipulated to
control the outlet temperatures, with the assumption that the flow rates of
the cold and hot streams are constant, a linear model can be derived:
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Tco
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Fig. 2.8. A heat exchanger

ẋ (t) =

[
− vc

Vc
− UA

cP cρcVc

UA
cPcρcVc

UA
cPhρhVh

− vh

Vh
− UA

cPhρhVh

]
x (t) +

[ vc

Vc
0

0 vh

Vh

]
u (t) , (2.121)

y (t) = x (t) , (2.122)

where x = [x1, x2]
T = [Tco, Tho]

T and u = [u1, u2]
T = [Tci, Thi]

T . Define the
following constants k1 = UA

cPcρcVc
, k2 = UA

cPhρhVh
, a1 = vc

Vc
and a2 = vh

Vh
. Clearly,

these constants are positive for any design and operating conditions. Then,
the state equation becomes

ẋ =
[−a1 − k1 k1

k2 −a2 − k2

]
x +

[
a1 0
0 a2

]
u. (2.123)

To study the passivity of the above system, we define the following storage
function:

S (x) =
1
2
xT

[ 1
k1

0
0 1

k2

]
x > 0, ∀ x �= 0. (2.124)

Therefore,

Ṡ (x) = xT

{[ 1
k1

0
0 1

k2

] [−a1 − k1 k1

k2 −a2 − k2

]
x +

[
a1 0
0 a2

]
u

}
= xT

[−a1
k1

− 1 1
1 −a2

k2
− 1

]
x + xT

[ a1
k1

0
0 a2

k2

]
u

= −a1

k1
x2

1 −
a2

k2
x2

2 − (x1 − x2)
2 +

a1

k1
x1u1 +

a2

k2
x2u2

≤ a1

k1
y1u1 +

a2

k2
y2u2. (2.125)
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Note that the coefficients k1, k2, a1, a2 > 0. If the outputs are rescaled as

y∗ = [y∗1 , y
∗
2 ]T =

[
a1
k1

y1,
a2
k2

y2

]T
,

Ṡ (x) < uT y∗, ∀ x �= 0, (2.126)

leading to the conclusion that the heat exchanger is passive, regardless of de-
sign parameters (such as U, Vc, Vh, A), types of fluid (such as cPc and ρc) and
operating conditions (such as vc and vh). If the heat exchanger parameters
given in [65] are adopted, then vc = 2.29 × 103 ft3/h, vh = 6.24 × 103 ft3/h,
Vc = 5.57 ft3, Vh = 20.40 ft3, A = 521.5 ft2, cPh = 0.58 Btu/(lb·F),
cPc = 0.56 Btu/(lb·F), U = 75 Btu/(h· ft2·F), ρh = 47.74 lb/ft3 and
ρc = 44.93 lb/ft3. In this case, (2.121) and (2.122) become

ẋ =
[−690.87 279.17

69.254 −375.29

]
x +

[
411.7 0

0 306.03

]
u,

y =
[

1 0
0 1

]
x.

(2.127)

It is easy to verify that the above process is passive, because matrices

P =
[

0.0024 0
0 0.0030

]
and L =

[
3.3562 −0.9044
−0.9044 2.4526

]
(2.128)

Q = W = 0 (2.129)

are found to satisfy the conditions given in (2.41). The IFP index plot of
this process is shown in Figure 2.9a. Its phase plot is given in Figure 2.9b,
from which it can be seen that the phase shift is within (−90◦, 90◦) at all
frequencies.

Example 2.52 (Nonlinear model). A more realistic choice of manipulated vari-
ables is the flow rates of hot and cold streams, i.e., u = [u1, u2]

T = [vh, vc]
T . In

this case, we assume that the inlet temperatures Tci and Thi are constant. This
leads to a nonlinear model. To study the passivity of the process with respect
to an equilibrium point x0 = [x10, x20]

T = [Tco0, Thi0]
T , we define the follow-

ing deviation variables: x′ = [x′
1, x

′
2]

T = x − x0 and u′ = [u′
1, u

′
2]

T = u − u0,
where u0 = [vh0, vc0]

T . (Note: The deviation variables can have negative val-
ues.) Therefore,

ẋ′
1 = −k1 (x′

1 + x10) + k1 (x′
2 + x20) +

[
Tci

Vc
− 1

Vc
(x′

1 + x10)
]

(u′
1 + u10) ,

ẋ′
2 = k2 (x′

1 + x10) − k2 (x′
2 + x20) +

[
Thi

Vh
− 1

Vh
(x′

2 + x20)
]

(u′
2 + u20) .

(2.130)

Assume that (x0, u0) is at steady state, i.e.,
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Fig. 2.9. Linear heat exchanger model
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0 = −k1x10 + k1x20 +
Tci

Vc
u10 − 1

Vc
x10u10,

0 = k2x10 − k2x20 +
Thi

Vh
u20 − 1

Vh
x20u20.

(2.131)

Therefore,

ẋ′
1 = −k1x

′
1 + k1x

′
2 +

Tci

Vc
u′

1 −
1
Vc

x′
1u

′
1 −

1
Vc

x10u
′
1 −

1
Vc

x′
1u10,

ẋ′
2 = k2x

′
1 − k2x

′
2 +

Thi

Vh
u′

2 −
1
Vh

x′
2u

′
2 −

1
Vh

x20u
′
2 −

1
Vh

x′
2u20.

(2.132)

Define a storage function

S (x′) =
1
2
x′T

[ 1
k1

0
0 1

k2

]
x′ > 0, ∀ x′ �= 0; (2.133)

then,

Ṡ (x′) = − (x′
1 − x′

2)
2 − 1

Vck1
(u′

1 + u10) x′
1
2 − 1

Vhk2
(u′

2 + u20)x′
2
2

+
(

Tci − x10

Vck1

)
x′

1u
′
1 +

(
Thi − x20

Vhk2

)
x′

2u
′
2. (2.134)

Define a rescaled output y∗ = [y∗1 , y
∗
2 ]T =

[(
Tci−x10

Vck1

)
x′

1,
(

Thi−x20
Vhk2

)
x′

2

]T
. Also

note u1 = u′
1 + u10 ≥ 0 and u2 = u′

2 +u20 ≥ 0 because u1 and u2 are physical
flow rates. Then,

Ṡ (x′) ≤ − (x′
1 − x′

2)
2 + y∗1u

′
1 + y∗2u

′
2

≤ y∗Tu′.
(2.135)

Therefore, the process is passive with respect to the equilibrium x′ = [0, 0]T .
It is interesting to point out that

1. Similar to the linear case, the heat exchanger is inherently passive because
the passivity condition is valid for any design parameters, types of fluid
and operating conditions (different Tci and Thi).

2. The system is passive with respect to any physical equilibrium point
[x10, x20]

T because (2.135) holds for any x0.
3. The equilibrium point x0 is GS but not GAS. If x′

1 = x′
2 �= 0, the unforced

system does not converge to x′ = 0.
4. Output rescaling is equivalent to sensor calibration. Because Tci is never

greater than Tco, the rescaling coefficient for y∗1 is non-positive. A higher
inlet cold stream flow rate will lead to a lower outlet temperatures (Tco and
Tho). This implies that the direction of x′ movement has to be reversed
to obtain a minimum phase condition.
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In addition, as the system outputs are simply rescaled states, the above
system is ZSD. As a result, the heat exchanger is very easy to control.
According to Proposition 2.50, any output feedback controller (a mapping
from y∗ to u′) which is dissipative with respect to a supply rate of w =
u′T y∗ − νy∗T y∗ − ρu′Tu′, ρ > 0 and ν > 0 (i.e., with simultaneous excessive
IFP and OFP) will asymptotically stabilize the equilibrium x′ = [0, 0]T . A
special case is a proportional only controller u′ = −ky∗ for any k > 0.

2.8 Summary

In this chapter, the basic concepts of dissipative systems and passive systems
are introduced. The input-output properties of passive systems are discussed.
These properties lead to useful stability conditions for interconnected systems,
on which the developments described in later chapters build. At first glance,
it seems that the stability conditions based on passivity could be conserva-
tive compared to those based on dissipativity, because passive systems are a
special case of dissipative systems. With the notions of IFP and OFP, the
conservativeness vanishes because dissipative systems with respect to differ-
ent supply rates can be represented by passive systems with certain IFP and
OFP. Excess and shortage of IFP and OFP are also used to characterize pro-
cesses in terms of their passivity. In the next few chapters, passivity-based
system analysis and control design are developed for linear processes. These
approaches can be implemented numerically and applied directly in routine
process control practice.



3

Passivity-based Robust Control

In Chapter 2, we have seen that input feedforward passivity (IFP) is a phase
related property. Therefore, it is possible to characterize the uncertainties in
terms of their IFP so that both the phase and gain information of the uncer-
tainties can be used, leading to a potentially less conservative control design
approach. Robust control design methods based on the passivity uncertainty
bound are presented in this chapter, along with case studies and illustrative
examples. The developments are for linear systems, leading to systematic ap-
proaches that can be readily applied to process control practice.

3.1 Introduction

Model based control is very attractive because it provides systematic proce-
dures for controller design and can achieve good control performance. Vari-
ous control techniques have been proposed with different features. However,
all such techniques must face the formidable adversaries of plant variability
and uncertainty. For example, the performance of linear quadratic Gaussian
(LQG) controllers can be arbitrarily bad, and even the stability of the closed-
loop system of the process and controller cannot be guaranteed if there exists
model–plant mismatch (also known as uncertainty). Unfortunately, perfect
models are very rare and in some cases even impossible to obtain, especially
for complex chemical processes. So it is very desirable that a model-based
controller can tolerate plant variability and uncertainty — i.e., be robust.

A vast amount of theoretical and applied research has been done on robust
process control. Currently, the mainstream of robust process control is based
on the Small Gain Theorem (such as H∞ control). The basic idea is to quan-
tify the uncertainty in terms of the bound of its gain and design a controller
to stabilize the process when the uncertainty is within the gain bound (repre-
sented using system norms). A very brief summary of H∞ control is presented
in this section to lay the foundation for development of the passivity-based
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Fig. 3.1. Model with additive uncertainty

approach. Thorough treatments of linear robust control can be found in [46]
and [156].

3.1.1 Uncertainties

The uncertainties can be classified into two categories: parametric uncertainty
and unstructured uncertainty. In the parametric uncertainty case, the struc-
ture of the model is known, but certain parameters are unknown. Denote the
actual but unknown linear plant as

Gt (s) := (At, Bt, Ct, Dt) , (3.1)

where Gt (s) is the transfer function and (At, Bt, Ct, Dt) is its state-space
representation, and the nominal plant (the model) as

G (s) := (Ag, Bg, Cg, Dg) . (3.2)

The parametric uncertainty represents parametric variations in plant dy-
namics, e.g., the uncertainties in certain entries of the state-space matrices
(Ag, Bg, Cg, Dg) or in specific loop gain and/or poles and/or zeros of the
plant transfer function. Unstructured uncertainty assumes less knowledge of
the process. Model errors include inaccurate or missing dynamics. The most
commonly used representations of unstructured uncertainty are

• Additive Uncertainty. The simplest way to express the difference between
the model and the true system is additive representation (as shown in
Figure 3.1):

Gt (s) = G (s) + ∆A (s) , (3.3)

where the model uncertainty is given by
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Fig. 3.2. Model with multiplicative uncertainty

∆A (s) = Gt (s) −G (s) . (3.4)

• Multiplicative Uncertainty. The model uncertainty may also be represented
in the multiplicative form (as shown in Figure 3.2):

Gt (s) = [I + ∆M (s)]G (s) , (3.5)

so that ∆M (s) is the modelling error relative to the nominal model, where,

∆M (s) = [Gt(s) −G(s)]G−1(s). (3.6)

Although the uncertainty systems are unknown, their bounds can often
be estimated. For example, in H∞ control, the largest possible “magnitudes”
of the uncertainties are used to estimate how “large” the uncertainties are.
The above uncertainties (∆A (s) and ∆M (s)) are represented as dynamic
systems. Therefore, the uncertainty at different frequencies can be represented
by frequency responses, e.g., ∆A (jω) = Gt (jω)−G (jω). The magnitudes of
the uncertainties can be described by using maximum singular values, e.g.,
σ̄ (∆A (jω)). The frequency-dependent description of uncertainties is useful
because model uncertainties are often small at low frequencies and increase to
unity and above at high frequencies [155]. In this case, the uncertainty regions
at different frequencies are assumed to be disc-shaped, σ̄ [∆A (jω)] < γ (ω).

A weighting function can be introduced to normalize the uncertainty to less
than 1 in magnitude at all frequencies. For example, as shown in Figures 3.1
and 3.2, stable and rational transfer functions WA(s) and WM (s) can be found
such that ∆A(s) and ∆M (s) can be represented as

∆A(s) = WA(s)∆(s), (3.7)
∆M (s) = WM (s)∆(s), (3.8)
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where σ̄ (∆ (jω)) < 1, ∀ ω ∈ R.
Given a transfer function G(s) that is analytic and bounded in the open

RHP, its H∞-norm is defined as [156]

‖G‖∞ � sup
Re(s)>0

σ̄ [G (s)] = sup
ω∈R

σ̄ [G (jω)] . (3.9)

Assuming that the uncertainty ∆ (s) is stable, then its bound can be neatly
represented by the H∞ system norm: ‖∆‖∞ < 1. More generally, the weighting
functions can be placed on both the input and output sides of the uncertainty,
e.g.,

∆A(s) = WAo(s)∆(s)WAi (s) , (3.10)
∆M (s) = WMo(s)∆(s)WMi (s) . (3.11)

For multivariable systems, the multiplicative uncertainty can be defined
in both input and output forms. Uncertainty ∆M (s) given in (3.6) is actually
the output multiplicative uncertainty because the uncertainty system is on
the output side (shown in Figure 3.2). Input multiplicative uncertainty can
be defined as follows [156]:

∆MI (s) = G−1(s) [Gt(s) −G(s)] . (3.12)

Another type of representation of uncertainty is called coprime factor un-
certainty [85], which is particularly suitable for unstable nominal models. In
this chapter, we focus on the representations of additive and multiplicative
uncertainties, to which passivity-based analysis is more readily applied.

3.1.2 Robust Stability

We can regroup the subsystems in Figures 3.1 or 3.2 such that the closed-loop
system can be represented as the feedback system of the uncertainty ∆ (s)
(from z to w) and the rest of subsystem M(s) “seen” by the uncertainty
(from w to z). The robust stability problem reduces to the stability of the
interconnected system in Figure 3.3.

The Small Gain Theorem [147] gives one sufficient condition for robust
stability. It can be described as: for the feedback system depicted in Figure 3.3,
if both ∆ and M are stable and ‖∆‖∞ ‖M‖∞ < 1, then the closed-loop system
is stable. If ∆ (s) is normalised as in (3.7) and (3.8), then the Small Gain
Theorem requires that

‖M‖∞ < 1. (3.13)

For additive uncertainty,

M (s) = K(s) [I + G (s)K (s)]−1 WA

= K(s)S (s)WA,
(3.14)
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Fig. 3.3. M − ∆ structure for robust stability analysis

where
S (s) = [I + G (s)K (s)]−1 (3.15)

denotes the sensitivity function.
For multiplicative uncertainty,

M (s) = G (s)K(s) [I + G (s)K (s)]−1
WM

= T (s)WM ,
(3.16)

where
T (s) = G (s)K (s) [I + G (s)K (s)]−1 (3.17)

denotes the complementary sensitivity function.
In H∞ control, the controller K (s) is designed such that the small gain

condition given in (3.13) is satisfied to guarantee robust stability.

3.2 Characterization of Uncertainties

3.2.1 Uncertainty Bound Based on IFP

As shown in the previous section, in H∞ control, the uncertainty is char-
acterized entirely by its gain, e.g., discs in a complex domain. To use the
phase information on the uncertainty, we can characterize the uncertainties
with their input feedforward passivity index. Assume negative feedback in
Figure 3.3. If the uncertainty is stable and passive with IFP (ν > 0), then a
controller can be designed such that the closed-loop system M (s) is stable
and strictly input passive to achieve robust stability. If the uncertainty has
a shortage of IFP (ν < 0), then the closed-loop system M (s) has to have
excessive OFP (ρ > −ν) to ensure robustness. This condition implies that
system M (s) has limited gain.

The frequency-dependent IFP index, as given in (2.90), can be adopted
to characterize the uncertainty at different frequencies. In this case, the in-
put feedforward is a dynamic system. The IFP index contains both the
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gain and phase information on the uncertainty. This can be seen by a sin-
gle input single output (SISO) example. For a SISO uncertainty system
∆ (s), its IFP index is reduced to the real part of its frequency response
νF (∆ (s) , ω) = Re (∆ (jω)). Represent ∆ (jω) = r (ω) [cos θ (ω) + j sin θ (ω)],
where r (ω) is the gain and θ (ω) is the phase of the uncertainty. Then the
IFP index νF (∆ (s) , ω) = Re (∆ (jω)) = r (ω) cos θ (ω).

Because we are concerned only with the shortage of IFP of the uncertainty,
the following uncertainty bound can be defined.

Definition 3.1 (Passivity-based uncertainty measure). The passivity-
based uncertainty measure is defined as

ν− (∆ (s) , ω) � −νF (∆ (s) , ω)

= −1
2
λ (∆ (jω) + ∆∗ (jω)) ,

(3.18)

where λ denotes the minimum eigenvalue.

The above uncertainty measure indicates the worst case shortage of input
passivity. To illustrate further the property of this passivity-based uncertainty
measure, let us consider the following set of uncertain plants.

Example 3.2. Assume that Π is the set of uncertain plants generated by vary-
ing the parameters of the following transfer function:

Gt (s) =
k

τs + 1
e−θs, 2 ≤ k, θ, τ ≤ 4. (3.19)
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The nominal plant model is

G (s) =
3

3.5s + 1
e−3.5. (3.20)

The Nyquist regions for Gt (s) ∈ Π are generated as shown in Figure 3.4.
In particular, the frequency response of the additive uncertainty ∆A (jω) =
Gt (jω) −G (jω) at ω = 0.2 rad/s is shown in Figure 3.5.

From the above example, it can be seen that the passivity-based uncer-
tainty bound, ν− (∆ (s) , ω), is never greater than the gain bound. In many
cases, such as Example 3.2, the frequency response of the nominal model is not
situated in the centre of the Nyquist region, therefore, the IFP index bound
can be significantly smaller than that of the gain bound, leading to potentially
less conservative robust control.

For more general multivariable uncertainties, the passivity-based uncer-
tainty bound has the following property:

Property 3.3 (IFP Index). For any stable multivariable linear system ∆ (s),

1. ν− (∆(s), ω) ≤ σ̄ (∆(jω)) ;
2. If ∆(s) = ∆p(s) + ∆np(s), where ∆p is passive and ∆np is non-passive

then,
ν− (∆(s), ω) ≤ σ̄ (∆np(jω)) .
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Proof.

1. Since |λ[∆(jω)]| ≤ σ̄[∆(jω)],

λ (∆(jω) + ∆∗(jω)) ≥ −σ̄ (∆(jω) + ∆∗(jω))
≥ −σ̄ (∆(jω)) − σ̄ (∆∗(jω))
≥ −2σ̄ (∆(jω)) .

(3.21)

Therefore,

ν− (∆(s), ω) � −1
2
λ (∆ (jω) + ∆∗ (jω))

≤ σ̄[∆(jω)], ∀ ω ∈ R.
(3.22)

2. From the Weyl inequality [4],

λ

(
1
2
[∆(jω) + ∆∗(jω)]

)
≥ λ

(
1
2
[∆p(jω) + ∆∗

p(jω)]
)

+ λ

(
1
2
[∆np(jω) + ∆∗

np
(jω)]

)
≥ 1

2
(
λ
(
∆p(jω) + ∆∗

p(jω)
)− σ̄

(
∆np(jω) + ∆∗

np(jω)
))

≥ −σ̄ (∆np(jω)) .

(3.23)

Therefore,
ν− (∆(s), ω) ≤ σ̄ (∆np(jω)) . (3.24)

Based on the above frequency-dependent passivity-based uncertainty mea-
sure, the following robust stability condition can be obtained:

Proposition 3.4. Consider the feedback system shown in Figure 3.3, where
M(s) and ∆(s) are linear time invariant (LTI)systems. Assume that the un-
certainty ∆(s) is stable with ν−(∆(s), ω) ≤ νF (W (s), ω), where W (s) is a
stable and minimum phase transfer function. The closed-loop system is stable
if

M ′(s) = M(s)[I −W (s)M(s)]−1 (3.25)

is stable and strictly input feedforward passive.

Because for linear systems, the term strictly passive systems is a syn-
onym of stable and strictly input passive systems, we will use the term
strictly passive systems from this point. The proof of the above condition
is straightforward. It is obvious that ∆(s) + W (s) is positive real, because
ν−(∆(s), ω) < νF (W (s), ω). Perform loop shifting as shown in Figure 3.6.
According to Proposition 2.47, it is obvious that M(s)′, which is M(s) with
positive feedback of W (s), needs to be strictly passive to ensure closed-loop
stability. This is a generalized excessive OFP condition on M (s), where feed-
back is a dynamic system.
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Fig. 3.6. Loop shifting

3.2.2 Uncertainty Bounds Based on Simultaneous IFP and OFP

Proposition 3.4 gives the condition of robust stability for any stable uncer-
tainty bounded only by the passivity-based IFP measure, including uncer-
tainties with very large gain. This may lead to stringent conditions on system
M (s):

• M (s) must have excessive OFP and must be minimum phase. For example,
if ∆ (s) is a multiplicative uncertainty, then,

M (s) = T (s) = G (s)K(s) [I + G (s)K (s)]−1
. (3.26)

If the process G (s) is not minimum phase, then it is not possible to find
a controller K (s) such that M (s) is minimum phase.

• In robust control design based on the above condition, a controller K (s)
must be found to render the closed-loop system M ′ (s) strictly passive (or
strictly positive real). An explicit solution to this problem can be difficult
because M ′ (s) may have a relative degree of 1 which may lead to numer-
ical problems in the positive-real lemma (see Lemma 2.16). The practical
approach is to render M ′(s) extended strictly positive real (ESPR) (see
Definition 2.24) [102, 123]. However, if G (s) is strictly proper, then a
proper control K (s) cannot render M ′(s) ESPR.

To remove the above restrictions, we can characterize the uncertainty by
using both IFP and OFP indices. If the uncertainty ∆ (s) is stable and gain
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Fig. 3.7. Uncertainty measure with simultaneous IFP and OFP

bounded, then there exists a ρ > 0 such that the ∆ (s) with simultaneous
negative feedforward νI and positive feedback of ρI is passive (as shown in
Figure 3.7). Because ∆ (s) has excessive OFP, according to Theorem 2.49,
system M (s) (and also system M ′ (s)) is only required to be IFP(νM ) such
that νM > −ρ. Neither M (s) nor M ′ (s) needs to be ESPR. Such a simulta-
neous IFP and OFP bound can be more conveniently represented using the
concept of a system sector.

Definition 3.5 (Sector of a system [102]). A stable linear system T (s) is
said to be inside the sector [a, b], where a and b are real numbers with a < b,
0 < b < +∞, if

Re
([

I − b−1T (s)
]∗

[T (s) − aI]
)
≥ 0, ∀ s = jω (3.27)

and T (s) is said to be outside the sector [a, b] if

Re
([

I − b−1T (s)
]∗

[T (s) − aI]
)

< 0, ∀ s = jω, (3.28)

where
Re (T (jω)) � 1

2
[T (jω) + T ∗(jω)] . (3.29)

The system sector is related to both the passivity bound and the gain
bound [44]. For any stable system T (s),

1. T (s) is passive ⇐⇒ T (s) is inside [0,+∞].
2. T (s) is strictly passive ⇐⇒ T (s) is inside [δ, + ∞ − ζ] (where δ and ζ

are arbitrarily small positive real numbers).
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3. T (s) is IFP(ν) ⇐⇒ T (s) is inside [ν,+∞].
4. ||T (s)||∞ ≤ γ ⇐⇒ T (s) is confined to a symmetrical sector [−γ,+γ].
5. T (s) with simultaneous negative feedforward νI and positive feedback of

ρI is passive ⇐⇒ T (s) is inside [ν, 1/ρ].

Property 3.6 (Properties of Sectors [147]). If a linear system T is inside sector
[a, b] and a linear system T1 is inside [a1, b1], then,

1. System kT is inside [ka, kb] (where k is a constant).
2. System T + T1 is inside [a + a1, b + b1].

Theorem 3.7 (Sector stability theorem [147]). Consider linear systems
G1 and G2 in negative output feedback connection. Let them both be confined
to sectors. Let ζ and δ be constants, of which one is strictly positive and one is
zero. Suppose that G2 is inside the sector [a+ζ, b−ζ] (b > 0). The closed-loop
system of G1 and G2 is stable if G1 satisfies one of the following conditions:

1. If a > 0 and G1 is outside [−1/a− δ, − 1/b + δ].
2. If a < 0 and G1 is inside [−1/b + δ, − 1/a− δ].
3. If a = 0 and G1 is inside [−1/b + δ, + ∞].

The above condition is fundamentally equivalent to the stability con-
dition based on simultaneous IFP and OFP (as given in Theorem 2.49).
It can also be seen that both the Small Gain Theorem and the Passivity
Theorem are special cases of sector stability. A stable system G(s) can be
confined in different sectors, for example, [ν,+∞], or [−γ, γ], etc., where
ν = 1

2 min
ω∈R

λ (G(jω) + G∗(jω)), γ = max
ω∈R

σ̄ (G(jω)), as shown in Figure 3.8.

The lower and upper sector bounds are correlated. A smaller lower bound
implies a smaller corresponding upper bound, and vice versa. If the uncer-
tainty system ∆(s) is confined in the sector [a, b] (where b � |a| ≥ 0 ≥ a),
to keep closed-loop stability, T (s) only needs to be within the sector of
[−1/b + σ,−1/a− ζ] (where σ and ζ can be any positive constants with arbi-
trarily small values), not necessarily strictly passive. The passivity-based un-
certainty measure can be represented as both the lower sector bound (relating
to IFP) and upper sector bound (relating to OFP) of the uncertainty system
∆(s), preferably frequency-dependent so that system robustness and perfor-
mance can be optimized at different frequencies. However, implementation
of both frequency-dependent lower and upper bounds is very complicated.
A simplified approach is to characterize the uncertainty using a frequency-
dependent lower sector bound with a constant upper bound. This is equivalent
to a frequency-dependent IFP index with a constant OFP index:

Definition 3.8 (Sector-bounded passivity uncertainty measure[10]).
Given a stable uncertainty system ∆(s), for a constant b � |ν(∆(s))|, the
sector-bounded passivity uncertainty measure is defined as

νS− (∆(s), ω, b) � − sup
{
a : Re

([
I − b−1∆(jω)

]∗
[∆(jω) − aI]

)
≥ 0

}
.

(3.30)
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Fig. 3.8. System confined in different sectors

The above measure indicates the minimum feedforward required (similar
to the ν− index), such that the uncertainty with positive feedback of 1/b
is passive. The sector-bounded passivity index can be estimated from the
following conditions:

Theorem 3.9 ([8]). For a given stable system T (s) and the upper sector
bound b, the sector-bounded passivity index is bounded by the following in-
equality:

νS− (T (s), ω, b) ≤ 2σ̄2 (T (jω)) − bλ (T (jω) + T ∗(jω))
2b− λ (T (jω) + T ∗(jω))

. (3.31)

Proof. Let:

a = −2σ̄2 (T (jω)) − bλ (T (jω) + T ∗(jω))
2b− λ (T (jω) + T ∗(jω))

(3.32)

and

N = Re
([

I − T (jω)
b

]∗
[T (jω) − aI]

)
=
(
1 +

a

b

)
[T (jω) + T ∗(jω)] − 2T ∗(jω)T (jω)

b
− 2aI.

(3.33)

Since N is a Hermitian matrix, the necessary and sufficient condition for N
to be positive semidefinite is that its eigenvalues are all nonnegative, i.e.,
λ(N) ≥ 0. Denote λm (ω) = λ (T (jω) + T ∗(jω)). Because T (jω) + T ∗(jω),
−2T ∗(jω)T (jω)/b and 2aI are all Hermitian matrices, from the Weyl inequal-
ity [4],
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λ(N) ≥ λm (ω) +
a

b
λm (ω) − 2a− 2σ̄2 (T (jω))

b

= λm (ω) +
2σ̄2 (T (jω)) − bλm (ω)

λm (ω)−2b

[
1
b
λm (ω) − 2

]
− 2σ̄2 (T (jω))

b

= λm (ω) +
2σ̄2 (T (jω))

b
− λm (ω) − 2σ̄2 (T (jω))

b
= 0.

(3.34)

Therefore, matrix N is positive semidefinite. From Definition 3.5, T (jω) is in
the sector [a, b]. This proves (3.31).

The sector-bounded passivity measure has the following properties:

Property 3.10 (Properties of sector-bounded passivity index [10]).

1. νS− (T1(s) + T2(s), ω, b1 + b2) ≤ νS− (T1(s), ω, b1) + νS− (T2(s), ω, b2).
2. For any ‖T (s)‖∞ ≤ b < ∞, νS− (T (s), ω, b) ≤ σ̄ (T (jω)).
3. If T (s)m×m = diag{t1(s), . . . , ti(s), . . . , tm(s)}, then

νS− (T (s), ω, b) ≤ σ̄ (T (jω)) . (3.35)

Proof.

1. This property can be concluded directly from Property 3.6.
2. Denote λ (ω) = λ (T (jω) + T ∗(jω)). Since b ≥ ||T (s)||∞ and b≥ 1

2λ (ω)
for any ω∈ R, from Theorem 3.9,

νS− (T (s), ω, b) ≤ 2σ̄2 (T (jω)) − bλ (ω)
2b− λ (ω)

= σ̄ (T (jω)) +
{σ̄ (T (jω)) − b} {2σ̄ (T (jω)) + λ (ω)}

2b− λ (ω)
.

(3.36)

For any ω,

σ̄ (T (jω)) ≥ 0, σ̄ (T (jω)) ≥ λ (ω) /2, b ≥ σmax (T (jω)) . (3.37)

This leads to

[σ̄ (T (jω))−b] [2σ̄ (T (jω)) + λ (ω)]
2b− λ (ω)

≤ 0. (3.38)

Therefore,
νS− (T (s), ω, b) ≤ σ̄ (T (jω)) . (3.39)
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3. Define:

N(ω) = Re
([

I − T (jω)
b

]∗
[T (jω) + νS−(T (jω), ω, b)I]

)
. (3.40)

Because T (s) is diagonal, so is N(ω) = diag{ni(ω)} (i = 1, . . . ,m), where

ni(ω) = Re
(
[1 − ti(jω)/b]∗ [ti(jω) + νS−(T (jω), ω, b)]

)
, i = 1, . . . ,m.

(3.41)
The sector-bounded passivity index νS− (T (s), ω, b) is the minimum value
such that N(ω) is positive semidefinite for all ω, that is, ni(ω) ≥ 0, ∀ ω,
i = 1, . . . ,m. Define

n∗
i (ω) = Re

(
[1 − ti(jω)/b]∗ [ti(jω) + ai]

)
, i = 1, . . . ,m. (3.42)

where ai = νS−(ti(s), ω, b) is the minimum value such that n∗
i (ω) ≥ 0;

then
max

i
ai = max

i
νS− (ti(s), ω, b) (3.43)

is the minimum value such that all the inequalities ni(ω) ≥ 0 hold for all
i = 1, . . . ,m. Therefore, (3.35) holds.

Similar to the IFP index ν−, the sector-based passivity index also com-
prises both the phase and gain information of the uncertainty, although it is
less obvious.

3.3 Passivity-based Robust Control Framework

Based on the above passivity uncertainty measure, we can develop a passivity-
based robust control (PBRC) framework, including robust stability conditions
and a control design method, as detailed in [8].

3.3.1 Robust Stability Condition

The robust stability condition on the basis of passivity can be described as
follows:

Theorem 3.11 (Passivity-based robust stability condition). Consider
an interconnected system (as shown in Figure 3.6) comprised of M(s) and a
stable uncertainty system ∆(s). Given a stable and minimum phase weighting
function W (s) whose sector-bounded passivity index

νS− (W (s), ω, bw) ≤ −νS−(∆(s), ω, b) (3.44)

the closed-loop system will be stable if

M ′(s) +
1

b + bw
I (3.45)

is strictly passive or ESPR, where M ′(s) is defined in (3.25).
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Proof. Assume νS− (∆,ω, b) = α(ω), where α(ω) is a nonnegative real func-
tion of frequency. Thus ∆(s) and W (s) are confined in the sectors [−α(ω), b]
and [α(ω), bw], respectively. From Property 3.6, system ∆(s)+W (s) is inside
sector [0, b + bw]. From Theorem 3.7, the sufficient condition for the closed-
loop system of M − ∆ to be stable is that System M ′(s) is in the sector of[
− 1

b+bw
+ δ,+∞− δ

]
(where δ is an arbitrarily small positive real number).

Again from Property 3.6, M ′(s) + 1
b+bw

I needs to be confined to [δ,+∞− δ].

The PBRC problem is now formulated as follows: Given a plant model
with uncertainty which is bounded by its sector-bounded passivity index, find
a controller such that the stability condition in Theorem 3.11 is satisfied.
Theorem 3.11 reduces to Proposition 3.4 when the upper bound b equals +∞.
Since b is always chosen to be much larger than the system’s infinity norm,
Theorem 3.11 can be seen as a weak passivity stability condition. Although
the sector-bounded passivity index of an uncertainty system is very close to
its IFP passivity index when a large upper bound is adopted, the restriction
on the relative degree of M ′(s) is removed as long as b < +∞.

3.3.2 Robust Stability and Nominal Performance

It is known that robustness and nominal performance compete with each
other in H∞ control. This is also true in passivity-based robust control. The
robust stability condition presented in the previous subsection implies gain
constraints on the closed-loop system “seen” by the uncertainty.

Proposition 3.12. The robust stability condition in Theorem 3.11 implies
that for all frequencies,

σ̄

(
M(jω) − 1

2

[
1

νS− (∆ (s) , ω, b)
− 1

b

])
<

1
2

[
1

νS− (∆ (s) , ω, b)
+

1
b

]
.

(3.46)

Proof. Denote a (ω) = νS− (∆ (s) , ω, b). Define a complex function

N(ω) = M(jω)[I − a (ω)M(jω)]−1 +
1

b + a (ω)
I. (3.47)

Theorem 3.11 requires that N(ω) + N∗(ω) > 0, ∀ ω ∈ R. Furthermore,

N(ω) + N∗(ω)

=
b

b + a (ω)

{[
M(jω) +

1
b
I

]
[I − a (ω)M(jω)]−1

+ [I − a (ω)M∗(jω)]−1

[
M∗(jω) +

1
b
I

]}
=

b

b + a (ω)
[I − a (ω)M∗(jω)]−1

{
[I − a (ω)M∗(jω)]

[
M(jω) +

1
b
I

]
+
[
M∗(jω) +

1
b
I

]
[I − a (ω)M(jω)] [I − a (ω)M(jω)]−1

}
.

(3.48)
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Since b
b+a(ω) > 0, the above condition implies for all ω ∈ R that

λ

(
[I − a (ω)M∗(jω)]

[
M(jω) +

1
b
I

]
+
[
M∗(jω) +

1
b
I

]
[I − a (ω)M(jω)]

)
> 0. (3.49)

The above inequality can be rewritten as follows:

λ̄

(
2a (ω)M∗(jω)M(jω) +

a (ω)
b

M(jω)

+
a (ω)

b
M∗(jω) −M(jω) −M∗(jω) − 2

b
I

)
< 0. (3.50)

where λ̄ denote the maximum eigenvalue. After factorization of the left-hand
side, for all ω ∈ R,

λ̄

{[
M(jω) − 1

2

(
1

a (ω)
− 1

b

)
I

]∗ [
M(jω) − 1

2

(
1

a (ω)
− 1

b

)
I

]}
<

1
4

(
1

a (ω)
+

1
b

)2

, (3.51)

leading to

σ̄

(
M(jω) − 1

2

(
1

a (ω)
− 1

b

)
I

)
<

1
2

(
1

a (ω)
+

1
b

)
. (3.52)

In the feedback control shown in Figures 3.1 and 3.2, one of the common
control objectives is to keep the error between the plant output y and the
reference r small when disturbance d exists. Therefore, a small sensitivity
function S(s) (as defined in (3.15)) is desirable. If the uncertainty is modelled
as multiplicative uncertainty, the system M (s) “seen” by the uncertainty is
the complementary sensitivity function T (s), defined in (3.17). From the above
condition, it is concluded that the gain of T (s) has to be limited by the νS−
index of the uncertainty. This implies the limitation on nominal performance:
If at certain frequency ω, νS− (∆(s), ω, b) ≤ a, the gain constraint implies that
it is possible to reduce σ̄ (S (jω)) = σ̄ (I − T (jω)) to be arbitrarily small for
1
a + 1

b ≥ 1 but when 1
a + 1

b < 1, the smallest gain of the sensitivity function is

σ (S (jω)) ≥ σ (I) − σ̄ (T (jω)) = 1 −
(

1
a

+
1
b

)
, (3.53)

where σ denotes the minimum singular value. Because b is usually a large
number, practically only the value of a plays a significant role in the above
equation.
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3.3.3 Advantages and Limitations of Passivity-based Robust
Control

Both the Small Gain Theorem and the Passivity Theorem are special cases of
sector stability. Given the uncertainty system ∆(s) inside the sector [−a, b],
if a is close to b, then the small-gain based control is not conservative. If a is
much less than b, especially if a ≤ 0, then the passivity-based condition can
be significantly less conservative. Because the passivity index of the uncer-
tainty combines both gain and phase information, PBRC will be preferable
for uncertain systems with variations small in phase but large in gain.

The main advantage of the PBRC design method compared with small
gain based control is that the passivity-based approach is often less conserva-
tive. The passivity index of the uncertainty is less than, and sometimes much
less than its gain bound. According to the discussion in Section 3.3.2, the
bandwidth of the open-loop system subject to closed-loop stability achieved
by PBRC can be larger than that of H∞ control. This means faster command
response and disturbance rejection. Furthermore, if the nominal process model
has RHP poles and/or zeros, then it is inevitable that system M(s) (e.g., the
complementary sensitivity function T (s) in the case of multiplicative uncer-
tainty) will have its gain rising to its peak before it rolls off [40]. This implies
poor robustness at the midfrequency. PBRC does not require the gain condi-
tion of M(s) and thus avoids this problem.

The proposed control is limited to control applications where the passivity
indices of the uncertainties can be estimated. Typical applications include
(1) linear regulatory controller synthesis for nonlinear processes using the
robust control framework, where the linearised model at the nominal operating
point is used as the control model and the model mismatch between the
control model and the linearised models at different operating points is treated
as uncertainty; (2) control of processes with unknown parameter variations;
(3) control of processes whose uncertainty is passive (e.g., [50]).

3.3.4 Robust Control Design

In this section, we discuss the PBRC design approach. Here we assume that
the multiplicative uncertainty representation is used. A similar approach can
be derived for other types of uncertainty representation. The robust control
synthesis problem is formulated as follows:

Problem 3.13. Given a nominal plant model: G(s) := (Ag, Bg, Cg, Dg) with
multiplicative uncertainty ∆(s) bounded by its sector-bounded passivity in-
dex:

νS− (∆(s), ω, b) ≤ −νS−(W2(s), ω, bw), (3.54)

where W2 (s) is a stable and minimum phase weighting function. Design a con-
troller K(s) to stabilize the plant robustly and achieve the following nominal
performance:
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Fig. 3.9. All solution controller for performance

‖W1S‖∞ < 1, (3.55)

and
T (s)[I −W2(s)T (s)]−1 +

1
b + bw

I is ESPR. (3.56)

Where weighting function W1 (s) is used to specify required nominal per-
formance. S (s) and T (s) are the sensitivity and complementary functions,
respectively (as given in (3.15) and (3.17)).

The challenge is to find a controller such that both conditions in (3.55)
and (3.56) are satisfied. Because the passivity and H∞ conditions are required
for entirely different closed-loop systems as given in (3.56) and (3.55), exist-
ing multi-objective controller synthesis methods such as those used in mixed
H2/H∞ output feedback synthesis [19, 68] cannot be used to solve the pro-
posed problem. A two-step approach is developed as follows. The basic idea is
first to find all the controllers that satisfy (3.56) and then select the suitable
final controller that also satisfies (3.55).

Step 1. Find the all-solution controller for the nominal
performance specification

The problem of finding a controller K(s) that satisfies the constraint in (3.55)
alone is that it may lead to controllers with infinite gain. To get sensible
solutions, a constant weight w3 is used to constrain the gain of the controller
indirectly. Assume that W1 (s) := (Aw1, Bw1, Cw1, Dw1). The performance
specification (3.55) is revised as follows:

‖PS‖∞ < 1, (3.57)
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where

PS (s) =
[

W1(s)S(s)
w3K (s)S (s)

]
(3.58)

has the following state-space representation:

PS (s) :=

⎡⎢⎢⎢⎢⎣
Ag 0 0 Bg

−Bw1Cg Aw1 Bw1 −Bw1Dg

−Dw1Cg Cw1 Dw1 −Dw1Dg

0 0 0 w3I
−Cg 0 I −Dg

⎤⎥⎥⎥⎥⎦ . (3.59)

By using an H∞ control synthesis tool (e.g., [35]), the all-solution controller

FK(s) =
[
F11(s) F12(s)
F21(s) F22(s)

]
:=

⎡⎣ AF BF1 BF2

CF1 DF11 DF12

CF2 DF21 DF22

⎤⎦ (3.60)

can be found. As shown in Figure 3.9, FK(s) is a two-port system such that
all controllers K(s) that satisfy (3.57) can be parameterized by a stable con-
traction map U(s) (i.e., ‖U‖∞ ≤ 1):

K(s) = F11(s) + F12(s)U(s)[I − F22(s)U(s)]−1F21(s). (3.61)

The right-hand side of the above equation is called the lower linear fractional
transformation of FK(s) and U (s), denoted as Fl(FK(s), U(s)).

Step 2. Determine the contraction map U(s) such that K(s) also
meets the ESPR Condition

Assume that W2(s) := (Aw2, Bw2, Cw2, Dw2). An augmented plant model
PP (s) can be derived to include both the process system model and the weight-
ing function W2. It has the following state-space representation:

PP (s) :=

⎡⎢⎢⎣
Ag 0 0 Bg

Bw2Cg Aw2 0 Bw2Dg

−Cg 0 1
b+bw

I −Dg

Dw2Cg − Cg Cw2 − I Dw2Dg −Dg

⎤⎥⎥⎦ . (3.62)

Condition (3.56) becomes Fl (PP (s),K(s)) is ESPR.
The above control problem is converted into an H∞ problem by using the

following relationship between passivity and the small gain condition:

Theorem 3.14 ([6]). Consider a linear system with a transfer function T (s).
Denote

T ′(s) = [ζI − T (s)] [ζI + T (s)]−1
, (3.63)

where ζ can be any positive real number. System T (s) is ESPR if and only if
T ′(s) is stable and ‖T ′‖∞ < 1.
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Fig. 3.10. Control design for robustness

The transformation given in (3.63) is called the Cayley transformation. By
using (3.63), PP (s) can be converted to P ′

P (s) such that Fl (PP (s),K(s)) is
ESPR if and only if Fl (P ′

P (s),K(s)) is stable and

‖Fl (P ′
P ,K)‖∞ < 1. (3.64)

P ′
P (s) has the following state-space representation:

P ′
P (s) :=

⎡⎣ AP BP1 BP2

CP1 DP11 DP12

CP2 DP21 DP22

⎤⎦ , (3.65)

where

AP =
[

Ag 0
Bw2Cg Aw2

]
,

BP1 =
[

0
0

]
, BP2 =

[
Bg

Bw2Dg

]
,

CP1 =
[

2(b+bw)
b+bw+1Cg 0

]
, CP2 =

[
Dw2Cg − 2(b+bw)+1

bw+bw+1 Cg Cw2

]
,

DP11 = b+bw−1
b+bw+1I, DP12 = 2(b+bw)

b+bw+1Dg,

DP21 = − b+bw

b+bw+1I, DP22 = Dw2Dg − 2(b+bw)+1
bw+bw+1 Dg.

Interconnect P ′
P (s) with FK(s) to form another two-port system, as shown

in Figure 3.10:
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PF (s) =
[
PF11 (s) PF12 (s)
PF21 (s) P22 (s)

]
= Fl (P ′

P (s), FK(s)) . (3.66)

Now the control design problem becomes

Problem 3.15. To find a stable map U(s) such that

‖U‖∞ < 1, (3.67)

and
‖Fl (PF , U)‖∞ < 1. (3.68)

The gain of U (s) should be limited to satisfy Condition (3.67). This can
be done by augmenting PF to

P ′
F (s) =

⎡⎣[PF11 (s)
0

] [
PF12 (s)

w4I

]
PF21 (s) PF22 (s)

⎤⎦ :=

⎡⎢⎢⎣
APF BPF1 BPF2

CPF11 DPF111 DPF121

CPF12 DPF112 DPF121

CPF2 DPF21 DPF22

⎤⎥⎥⎦ , (3.69)

where,

APF =
[
AP + BP2DF11XCP2 BP2Y CF2

BF1XCP2 AF + BF1XDP22CF1

]
,

BPF1 =
[
BP1 + BP2DF11XDP21

BF1XDP21

]
, BPF2 =

[
BP2Y DF12

BF2 + BF1DP22Y DF12

]
,

CPF11 =
[
CP1 + DP12DF11XCP2 DP12Y CF1

]
, CPF12 =

[
0 0
]
,

CPF2 =
[
DF21XCP2 CF2 + DF21DP22Y CF1

]
,

DPF111 = DP11 + DP12DF11XDP21, DPF121 = DP12Y DF12,
DPF112 = 0, DPF122 = w4I,
DPF21 = DF21XDP21, DPF22 = DF22 + DF21DP22Y DF12,
X = (I −DP22DF11)−1, and Y = (I −DF11DP22)−1.
By choosing a suitable weighting function w4, U (s) can be found by solving

the following H∞ control problem:

‖Fl (P ′
F , U)‖∞ < 1. (3.70)

Inequality 3.70 is equivalent to (3.68) and∥∥∥w4 (I − UPF22)
−1

UPF21

∥∥∥
∞

< 1. (3.71)

Because the gain of U (s) is penalised indirectly, some iterations are necessary
to find a suitable U (s) that satisfies ‖U‖∞ > 1. A larger w4 leads to a smaller
H∞-norm of U (s). A too large w4 will make Problem (3.70) infeasible.
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Control Design Procedure

The control design procedure can be summarized as follows:

Procedure 3.16 (Passivity-based robust control design)
1. Estimate the passivity index bound of the uncertainty and represent it

using weighting function W2 (s).
2. Determine the level of control performance that should be achieved and

represent it using weighting function W1 (s).
3. Choose a small constant for weighting w3. This value can be arbitrarily

small as long as it does not cause numerical problems, e.g., w3 = 10−4.
4. Find the augmented plants PS and PP as shown in (3.59) and (3.62).

Calculate P ′
P according to (3.65).

5. Find the all-solution controller FK (s) for the nominal performance
specification given in (3.57).

6. Interconnect P ′
P with FK (s) to form PF .

7. Solve Problem (3.70) to find the contraction map U (s). Some itera-
tions are necessary to find a suitable U(s). The ∞-norm and stability
of U(s) need to be checked in each round of iteration. The initial value
of w4 can be chosen as 1. If ‖U‖∞ > 1, then increase w4 and repeat
Step 7; If there is no solution for Problem (3.70), then decrease w4

and repeat Step 7.
8. If no solution can be found for Problem 3.15, then the performance

specification is unrealistic. Use a W1 (s) with smaller gain and repeat
Steps 3–7.

9. Calculate the final controller K(s) = Fl(FK(s), U(s)).

Noted that Steps 4–7 and 9 can be coded into a computer program and
executed automatically.

Matrix Inequality Approach

An alternative approach is to convert the controller synthesis problem into a
feasibility problem with matrix inequality constraints. Condition (3.56) can be
cast into a matrix inequality by using the positive-real lemma (Lemma 2.16).
Similarly, Condition (3.55) can be represented in a matrix inequality by using
the following bounded-real lemma:

Lemma 3.17 (Bounded-real Lemma [21]). Consider an LTI stable sys-
tem with a transfer function G (s) = D + C (sI −A)−1

B. The system norm
‖G‖∞ < γ if and only if there exists a symmetrical matrix P > 0 such that⎡⎣AT P + PA PB CT

BT P − γI DT

C D − γI

⎤⎦ < 0. (3.72)
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Now the control design problem is cast into a bilinear matrix inequality
(BMI) problem. The BMI constraints can be converted into LMIs using a
variable transformation technique [107]. The controller can then be designed
by using a semidefinite programming (SDP) tool [10].

3.3.5 Example of CSTR Control

The control of an endothermic reaction is used to illustrate the proposed
controller design. The reaction tank with a warming jacket is shown in Fig-
ure 3.11. The reactant with concentration Ca0 is fed into the tank with flow
rate F . The material reacts and absorbs heat in the tank. Assume that the
outlet flow rate is controlled so it is the same as the inlet flow rate. The hot
water at temperature Tj0 is fed into the jacket with flow rate Fj . Constant
holdup and perfect mixing are assumed in the tank and the jacket. The con-
trol system is designed to control the concentration Ca and temperature T in
the tank by manipulating flow rates F and Fj .

The dynamics of the system are described as

dCa

dt
=

1
V

[
F (Ca0 − Ca) − V α exp(− E

RT
)Ca

]
,

dT
dt

=
1
V

[
FT0 − FT − λV α exp(− E

RT Ca)
ρCp

− UAH(T − Tj)
ρCp

]
,

dTj

dt
=

Fj(Tj0 − Tj)
Vj

+
UAH(T − Tj)

ρjVjCj
.

(3.73)

The parameters are Vj = 3.85 ft3, α = 7.08 × 1010 h−1, E = 30 ×
103 Btu/lb·mol, AH = 250 ft2, R = 1.99 Btu/lb·mol, U = 150 Btu/h ft2 ◦R,

, 0

, 0 ,

,

, ,

Fig. 3.11. CSTR
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ρj = 62.3 lbmol/ft3, λ = 30 × 103 Btu/lb·mol, ρ = 50 lbmol/ft3, Cp =
0.75 Btu/h ft2◦R, and Cj = 1.0 Btu/lbmol

◦R.
The normalised linear model at the steady-state operating point (Fj =

50 ft3/h, Tj0 = 700 ◦R, Tj = 605 ◦R, F = 40 ft3/h, T0 = 600 ◦R, T =
597.7 ◦R, V = 50 ft3, Ca0 = 0.5 lb·mol/ft3 and Ca = 0.252 lb·mol/ft3 ) is

ẋ =

⎡⎣−1.588 −19.863 0
−0.266 −27.500 20.263

0 154.319 −169.332

⎤⎦x +

⎡⎣ 0.7873 0
0.0031 0

0 2.026

⎤⎦u,

y =
[

1 0 0
0 1 0

]
x,

(3.74)

where the state, input and output are deviation variables: x = [δCa, δT, δTj]T ,
u = [δF, δFj ]T , y = [δCa, δT ]T . The above linearised model at the nominal
operating point, denoted as G(s), is used to design a linear robust controller
for the nonlinear plant. If there are unmeasured variations of concentration
Ca0, temperature T0 of the inlet flow and the holdup of the tank V (t), the
process will be operating at different (perturbed) operating points. Assume
that the linearised models Gt(s) at the perturbed operating points belong to
a set Π . Then the multiplicative uncertainty caused by variations in the oper-
ating point ∆L(s) = [Gt(s) −G(s)]G(s)−1 can be estimated. The controller
is required to satisfy the following specifications:

Robust stability: The closed-loop system should be stable for
• Uncertainty ∆L(s) caused by variations in the operating point, Ca0(t),

T0(t) and V (t) : they may vary by ±4%, ±0.5%, ±1%, respectively.
• Unstructured high-order uncertainty arising from the ignored high-

order dynamics of the process and other uncertainty factors, the gain
bound of this part of uncertainty is estimated as

σ̄ (∆N (jω)) ≤
∣∣∣∣ 10jω + 1
jω + 1000

∣∣∣∣ , ∀ ω. (3.75)

Varying Ca0, T0 and V simultaneously, the frequency response data of the
linearised models Gt(jω) are obtained, from which the regions of frequency
response of ∆L(jω) are calculated (similar to Example 3.2). The gain bound
of uncertainty is then estimated at different frequencies. It is found that ∆L(s)
has quite a large gain at low frequencies and is approximately 170% at steady
state. By curve fitting, the gain bound of total uncertainty ∆ (s) = ∆L (s) +
∆N (s) is approximated by the following first-order model:

σ̄[∆(jω)] ≤
∣∣∣∣ jω + 34
0.05jω + 20

∣∣∣∣ ∀ ω. (3.76)

Choose the upper sector bound as b = 100. The sector-based passivity index
can be estimated from the frequency response regions of ∆L (jω) by using The-
orem 3.9. It is found that at steady state, νS− (∆L(s), 100, 0) = 0.84, which is
significantly smaller than the gain bound of 1.7. From Property 3.10,
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νS− (∆L + ∆N , ω, 150) ≤ νS− (∆L(s), ω, 100) + νS− (∆N (s), ω, 50)
≤ νS− (∆L(s), ω, 100) + σ̄ (∆N (jω))

< Re
(

jω + 11
0.05jω + 13

)
, ∀ ω.

(3.77)

Nominal performance: The concentration Ca and temperature T are re-
quired to be controlled at 0.252 lb·mol /ft3 and 597.7 ◦R, respectively. In
addition
• The steady-state offset is less than 1/1000 of the disturbance value.
• Disturbances should be rejected within 6 hours.

Control design: To achieve the nominal performance specification, we can
choose

W1(s) =
[ s+1000

1000s+1 0
0 s+1000

1000s+1

]
. (3.78)

Weighting function W2 (s) reflects the passivity bound of the uncertainty
and should satisfy

−νS−(W2(s), ω, bw) > νS− (∆(s), ω, 150) . (3.79)

According to (3.77), with wb = 150,

W2(s) =
[ s+8.5

0.05s+10 0
0 s+8.5

0.05s+10

]
. (3.80)

Other design parameters can be chosen rather arbitrarily. Here we use
w3 = 0.01, and w4 = 1.1.

The controller is then obtained following Procedure 3.16. The controller
parameters can be downloaded from companion website for the book at
springer.com. A conventional H∞ controller design for this system cannot
achieve the required nominal performance because of the large uncertainty at
low frequencies. The H∞ controller was designed such that the system was
robustly stable with the best possible nominal performance. The following
mixed sensitivity problem is solved:∥∥∥[WH1S WH2T

]T∥∥∥
∞

< 1, (3.81)

where

WH1(s) =
[ 5s+50

100s+43 0
0 5s+50

100s+43

]
, WH2(s) =

[
s+360
200 0
0 s+360

200

]
.

Simulation results: Closed-loop simulation using the nonlinear model and
two different controllers has been performed. Assume that at the end of
the first hour, Ca0 changes to 0.48 lb · mol/ft3, T0 changes to 603 ◦R
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and V changes to 51 ft3, simultaneously. Figure 3.12 shows the outputs of
the passivity-based controller. Figures 3.13 and 3.14 show the normalised
control errors (in percentage) of the Ca(t) and T (t) produced by the two
control methods. Compared with the control errors of conventional H∞
control, the benefits of using the method developed in this section can be
seen: The ITAE of the outlet controlled variables for the first 10 hours is
0.0545 for the passivity-based approach, compared to 2.916 for H∞ con-
trol. The large gain of multiplicative uncertainty at steady state prohibits
the use of controllers with high steady-state gain in the H∞ control design,
leading to a large offset.

3.4 Combining Passivity with the Small Gain Condition

From the discussion in Section 3.3.2, we can see that the gain constraint on the
system M (the system “seen” by the uncertainty) at low frequencies affects the
achievable control performance because high controller gain is required only at
low frequencies to achieve desirable dynamic control performance. Intuitively,
we can develop a robust control strategy which satisfies the passivity condition
at low frequencies and the small gain condition at high frequencies. This
leads to a simple approach which is less conservative than the robust control
approaches based on the small gain condition alone. This section is based
mainly on [9].
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First, we need to define positive realness and the passivity-based uncer-
tainty measure over a frequency band:

Definition 3.18 (Positive realness over a frequency band [9]). A stable
linear system with a transfer function T (s) is said to be strictly positive real
over a frequency band [ω1, ω2] if

T ′ (jω) + T ′∗ (jω) > 0, ∀ ω ∈ [ω1, ω2] . (3.82)

Definition 3.19. For a given stable linear system with a transfer function
T (s), its passivity-based uncertainty measure over a certain frequency band
[ω1, ω2] is defined as

νFB− (T (s), ω1, ω2) � −min
{

min
ω∈[ω1,ω2]

λ

(
1
2

[T (jω) + T ∗(jω)]
)

, 0
}

. (3.83)

Obviously, system T ′ (s) = T (s)+νFB−(T (s), ω1, ω2)I is stable and strictly
positive real over the frequency band [ω1, ω2]. If the νFB− index of an uncer-
tainty system is small, the uncertainty system is said to be near passive. In
particular, for multiplicative uncertainties, we have the following definition:

Definition 3.20 ([9]). A multiplicative uncertainty system ∆M (s) is said to
be near passive in a certain frequency band [ω1, ω2] if ∆M (s) is stable and

νFB− (∆M (s), ω1,ω2) < 1. (3.84)

Clearly, if σ (∆M (jω)) < 1 for ω ∈ [ω1, ω2], then, ∆M (s) is near passive
in the frequency band [ω1, ω2].

3.4.1 Robust Stability Condition Based on Passivity and Gain

Now let us look at the robust stability condition that combines the passivity
and gain condition in different frequency bands.

Theorem 3.21 (Robust stability based on both passivity and system
gain [9]). For the interconnected system shown in Figure 3.3, the closed-loop
system is stable if

1. ∆(s)M(s) is strictly proper; and
2. M(s) is strictly positive real in frequency band [0, ω1], ∆(s) is stable and

positive real in the same frequency band and

σ̄[∆(jω)]σ̄[M(jω)] < 1 (3.85)

over the frequency band (ω1,∞).
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(a) D contour

-1

(b) Eigenvalue loci of ∆(s)M(s)

Fig. 3.15. Nyquist plot

Proof. Since both M(s) and ∆(s) do not have poles on either the right half
plane or the imaginary axis, the generalized Nyquist stability condition re-
duces to the condition that the characteristic value loci should never encircle
the critical point −1 + 0j when s travels on the standard Nyquist D-contour.
From Condition 1, the eigenvalues of ∆(s)M(s) will be at the origin while
s traverses the right half circle with the infinite radius of the D-contour, as
shown in Figure 3.15a. Thus only the imaginary axis part of the D-contour
needs to be considered, and the stability of the closed-loop system can be
determined by proving the following two statements:

1. The eigenvalue loci of ∆(jω)M(jω) for ω ∈ [0, ω1] do not encircle the
critical point.

2. The eigenvalue loci of ∆(jω)M(jω) for ω ∈ (ω1,∞) do not encircle the
critical point either.

Proof of Statement 1 : Since ∆(s) is stable and passive, and M(s) is strictly
positive real in [0, ω1],

M(jω) + M∗(jω) > 0 and ∆(jω) + ∆∗(jω) ≥ 0, ∀ ω ∈ [0, ω1]. (3.86)

Consequently, the following two inequalities hold:

Re (x∗M(jω)x) > 0 and Re (x∗∆∗(jω)x) ≥ 0, (3.87)

for all x �= 0 and all real ω ∈ [0, ω1]. For any real eigenvalue λ of ∆(jω)M(jω),

λx = ∆(jω)M(jω)x (3.88)

with x �= 0. It can be shown that
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Re (λx∗M∗(jω)x) = Re (x∗M(jω)∗∆(jω)M(jω)x) = Re (y∗∆(jω)y) ≥ 0,
(3.89)

where y = M(jω)x �= 0, since M(jω) is not singular. This leads to the rela-
tionship:

Re (λx∗M(jω)∗x) = λRe (x∗M(jω)∗x) ≥ 0. (3.90)

Because λ is real and Re (x∗M(jω)∗x) > 0, λ ≥ 0, that is, the eigenvalue of
∆(jω)M(jω) does not cross the negative real axis, and thus does not encircle
the critical point −1+ j0 while s traverses the imaginary axis from j0 to jω1.
Proof of Statement 2 : Since∣∣λ̄ (∆(jω)M(jω))

∣∣ ≤ σ̄ (∆(jω)M(jω))
≤ σ̄ (∆(jω)) σ̄ (M(jω)) < 1,

(3.91)

the moduli of the eigenvalues of ∆(jω)M(jω) are always less than 1 for any
ω ∈ (ω1,∞).

By combining the proofs for statements (1) and (2), it is concluded that the
eigenvalue loci of ∆(jω)M(jω) will never encircle the critical point (−1, j0)
for all ω ∈ [0,∞), and thus the closed-loop system of ∆ and M is stable.

From the above discussion, it can be seen that the small gain condition
prevents the eigenvalue loci of ∆(jω)M(jω) from encircling the critical point
by limiting the moduli of the eigenvalues of ∆(jω)M(jω) while the positive-
real condition limits the arguments of the eigenvalues to the open interval
of (−π, π). Typical eigenvalue loci that satisfy Theorem 3.21 are shown in
Figure 3.15b.

In robust control design, it is the low and midfrequencies at which high
controller gain is needed to achieve good dynamic performance and the com-
petition between robust stability and control performance occurs. Therefore,
Theorem 3.21 provides a simple yet powerful approach to high-performance
robust control, particularly when the uncertainties have significant gain at low
frequencies, such as uncertainties caused by parameter variations exemplified
by the CSTR problem in Section 3.3.5. If the uncertainty ∆(s) is near passive
at low frequencies, then we can have the following proposition, which can be
obtained using loop shifting:

Proposition 3.22. For the interconnected system shown in Figure 3.2, the
closed-loop system is stable if M(s) is strictly proper and ∆M (s) is stable with
νFB−(∆M (s), 0, ω1) ≤ νmax < 1,

M̃(s) = M(s) [I − νmaxM(s)]−1 (3.92)

is strictly positive real in frequency band [0, ω1] and

[σ̄(∆(jω)) + νmax] σ̄[M̃(jω)] < 1 (3.93)

in frequency band (ω1,∞).
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Theorem 3.21 appears similar to the Small-phase-small-gain Theorem
given in [96]. The latter combines the small phase and small gain conditions
in different frequency bands. Define the phase modifier

ψm(ω) � tan−1

[
[cT (ω) − 1]c∆(ω)

1 − [cT (ω) − 1]c∆(ω)

]
, (3.94)

where cT (ω) and c∆(ω) are condition numbers of M(jω) and ∆(jω). Adopt-
ing the phase definition given in Definition 2.26, the Small-phase-small-gain
Theorem can be briefly stated as follows: if both ∆(s) and M(s) are stable,
the sum of the principal phase of ∆(s) and M(s) is in the open interval of
(−π + ψ, π − ψ) in the low-frequency band and the small gain condition is
ensured in the high-frequency band, then the closed-loop system is stable.

Theorem 3.21 is different from the small-phase-small gain condition be-
cause it is not based on the actual phase of the subsystems but on the phase
interval (positive-real condition). While the passivity condition is less flexible,
it is more applicable to control design since it is easier to design a controller to
render a MIMO system positive real rather than to minimize its phases. An-
other problem of the Small-phase-small-gain Theorem is that the small phase
condition for MIMO systems can be conservative if the condition number of
either ∆(s) or M(s) is large, leading to a large phase modifier. For example,
if the condition number of T (jω1) is 1.05 and the condition number of ∆(jω1)
is 10, then the phase modifier will be approximately π/2. Therefore, the small
phase condition is equivalent to the sum of the phase of M(jω1) and ∆(jω1)
in the interval (−π/2, π/2), which is very restrictive.

3.4.2 Control Synthesis

Problem formulation

Consider a nominal process model G(s) := (Ag, Bg, Cg, Dg) with multiplica-
tive uncertainty ∆M (s), as shown in Figure 3.2. The uncertainty is assumed to
be stable and near-passive at least in the low-frequency range. A robust con-
troller K(s) is to be designed to stabilize the plant and achieve a certain level
of nominal performance. More specifically, the closed-loop system should be
robustly stable under the uncertainty ∆ bounded by the following conditions:

νFB−(∆(s), 0, ω1) = νmax < 1, (3.95)

σ̄[∆(jω)] < |w∆(jω)| , ∀ ω ∈ [ω1,+∞]. (3.96)

Passivating control design

Because multiplicative uncertainty is assumed, the system seen by the uncer-
tainty M(s) is the complementary sensitivity function T (s). If the uncertainty
is positive real at low frequencies, the controller should render the system
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T (s) strictly positive real at these frequencies to achieve robust stability. For
systems with near passive uncertainties whose ν− (∆(s)) < νmax < 1 in a
certain low-frequency band, the controller K(s) should render the system
T̃ = T (T − νmaxI)

−1 strictly positive real in the same frequency band. Sim-
ilar to the approach in Section 3.3.4, this problem can be converted into an
H∞ problem by using the Cayley transformation given in (3.63):

T ′(s) =
[
ζI − T̃ (s)

] [
ζI + T̃ (s)

]−1

. (3.97)

Here we choose ζ = (1 − νmax)−1 to obtain a direct relationship between the
nominal performance and positive realness and thus to simplify the controller
design procedure. A weighting function W1(s) can be applied to T ′ after the
Cayley transformation such that the positive realness is achieved in a given
frequency band. It is chosen as a diagonal transfer function, W1(s) = w1(s)I,
where w1(s) is a stable, proper and minimum phase transfer function with
|w1 (jω)| > 1 for the frequency band over which T̃ (s) is strictly positive real.
Therefore, the controller K(s) which satisfies the H∞-norm condition,

‖W1T
′‖∞ < 1, (3.98)

will achieve strictly positive realness of T̃ (s) in the frequency band.
The positive real condition itself permits controllers with very large gains.

The weighting function W2(s) is then used to limit the controller gain when the
controller is connected to the process. W2(s) must be stable, proper, minimum
phase and usually diagonal. The inequality,∥∥∥2 (1 − νmax)W2K [I + 2 (1 − νmax)GK]−1

∥∥∥
∞

< 1, (3.99)

is satisfied in the controller design.
Assume that

W1(s) := (Aw1, Bw1, Cw1,Dw1)

and
W2(s) := (Aw2, Bw2, Cw2,Dw2).

Designing a controller that satisfies both (3.98) and (3.99) is equivalent to the
following H∞ control problem:

Problem 3.23. Find a stabilizing K(s) for the following augmented plant P :

ẋ =

⎡⎣ Ag 0 0
Bw1Cg Aw1 0

0 0 Aw2

⎤⎦x +

⎡⎣ 0
Bw1

0

⎤⎦w +

⎡⎣ Bg

Bw1Dg

Bw2

⎤⎦u,

z =
[
Dw1Cg Cw1 0

0 0 Cw2

]
x +

[
Dw1

0

]
w +

[
Dw1Dg

Dw2

]
u,

y =
[
2 (1 − νmax)Cg 0 0

]
x− 2 (1 − νmax) Iw + 2 (1 − νmax)Dgu,

(3.100)
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such that the closed-loop system is internally stable and ‖Tzw‖∞ < 1, where
Tzw (s) denotes the system from w to z.

Tools such as the MATLAB� Robust Control Toolbox can be used to solve
this problem.

Nominal performance

Although robust stability is based on passivity, the performance can be mea-
sured using the maximum singular values of the sensitivity function S(s). In
the previous section, we have limited the maximum singular values of T ′(jω)
to a certain frequency band to achieve positive realness. The following will
show that the maximum singular values (and thus the ∞-norm) of the sensi-
tivity function is also bounded by that of T ′(jω).

For nonsingular T ′,

T ′ =
(

1
1 − νmax

I − T̃

)(
1

1 − νmax
I + T̃

)−1

=
{

1
1 − νmax

I −GK [I + (1 − νmax)GK]−1

}
·
{

1
1 − νmax

I + GK [I + (1 − νmax)GK]−1

}−1

=
{
I − (1 − νmax)GK [I + (1 − νmax)GK]−1

}
·
{
I + (1 − νmax)GK [I + (1 − νmax)GK]−1

}−1

=
{
I − (1 − νmax)GK [I + (1 − νmax)GK]−1

}
[I + (1 − νmax)GK]

· [I + (1 − νmax)GK]−1
{
I + (1 − νmax)GK [I + (1 − νmax)GK]−1

}−1

= [I + 2(1 − νmax)GK]−1 .

(3.101)

Therefore,

σ̄ (S(jω)) = σ̄ (I + G(jω)K(jω))−1

≤ 2(1 − νmax)σ̄ (T ′(jω))
1 − |1 − 2νmax| σ̄ (T ′(jω))

.
(3.102)

Since 0 ≤ νmax < 1 and σ̄ (T ′(jω)) < 1,

|1 − 2νmax| σ̄ (T ′(jω)) < 1. (3.103)

It can be concluded that the nominal performance is bounded by σ̄ (T ′(jω))
in the frequency range where strict positive realness is achieved. The only
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cost is high controller gain. By choosing an appropriate weighting function
W1(s) = w1 (s) I for (3.100), we can obtain specified performance as well as
the positive realness of T̃ . If σ̄ (S(jω)) < α is required in some frequency
range, w1(s) should satisfy the following inequality in that frequency range:

|w1(jω)| > 2(1 − νmax)
α

− 2νmax + 1. (3.104)

In general, w1(s) could be chosen such that

1. w1(s) has high gain at low frequencies where good performance is required.
Especially, |w1(0)| → ∞ to ensure small steady-state error.

2. w1(s) has enough frequency bandwidth for fast command response and/or
disturbance rejection.

3. |w1(jω)| > 1 for the frequency band in which passivity should be achieved.
4. |w1(jω)| is small at high frequencies.

Combining with the small gain condition

At high frequencies where the uncertainty may not be passive, the small gain
condition

σ̄
(
[w∆(jω) + νmax] T̃ (jω)

)
< 1 (3.105)

applies. However, it is difficult to solve the following H∞ problem for two
different system T̃ (s) and T ′(s):∥∥∥∥ W1T

′

(w∆ + νmax) T̃

∥∥∥∥
∞

< 1. (3.106)

The approach used here is to limit the gain of the controller at high frequen-
cies. This can be seen from the following inequality:

σ̄
(
T̃ (s)

)
= σ̄

{
G(s)K(s) [I + (1 − νmax)G(s)K(s)]−1

}
≈ σ̄ (G(s)K(s)) ≤ σ̄ (G(s)) σ̄ (K(s))

(3.107)

for σ̄(GK) � 1 and νmax < 1.
Because the passivating controller K(s) stabilizes the plant G(s), robust

stability at high frequencies can be obtained by using an appropriate weighting
function W2(s) in (3.100). W2(s) should have small gain at low frequencies
and large gain at high frequencies.

Control design procedure

The controller can be designed by following the step-by-step design procedure:
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Procedure 3.24 (Robust control design [9])
1. Determine W1(s) according to (3.104) and choose W2(s) such that its

gain is small at low frequencies and large at high frequencies.
2. Solve the H∞ problem of the augmented plant in (3.100) to obtain the

controller K(s).
3. If the gain of W2(s) is too high such that no controller can be found

to meet the passivity and performance requirements, decrease the gain
of W2(s), and go to step (2) to redesign K(s).

4. Check whether T̃ (s) meets the requirements of robust stability at high
frequencies. If not, increase the gain of W2(s) at high frequencies and
go to step (2) to redesign K(s).

5. If both the passivity/performance condition at low frequencies and the
small gain condition at high frequencies are satisfied, the final robust
controller K(s) is obtained.

Some trial and error will be required to find the appropriate weighting
functions W1 (s) and W2(s). They should be stable and minimum phase and
can have the following structures:

W (s) = w(s)I =

k

m∏
i=1

(τZis + 1)

n∏
j=1

(τPjs + 1)

I. (3.108)

The order of the weighting functions is generally less than 3 to avoid high-order
controllers. The gain of the weighting functions can be shaped by adding a
pole −1/τPj, adding a zero −1/τZi and tuning k to shift the gain plot upward
and downward.

3.4.3 Robust Control of a Mixing System

The control of a mixing system is used to illustrate the proposed control design
method [9]. As shown in Figure 3.16, the tank is fed with two inlet flows with
flow rates F1(t) and F2(t). Both inlet flows contain one dissolved material with
concentrations c1 and c2, respectively. The outlet flow rate is F (t). Assume
that the tank is well stirred so that the concentration of the outlet flow is the
same as the concentration in the tank. The inlet flow rates F1(t) and F2(t) are
manipulated to control both the flow rate F (t) and the outlet concentration
c(t) at desired values.
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Feed 1

Concentration 1

Feed 2

Concentration 2
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Concentration

Propeller

Fig. 3.16. Mixing system

Process model

The linearised model at the point (V = V0, c = c0, F1 = F10, F2 = F20,
c1 = c10, c2 = c20) is as follows [73]:

ẋ =

[
− 1

2θ 0
(F10+F20)c0−(c10F10+c20F20)

V 2
0

F10+F20
V0

]
x +

[
1 1

c10−c0
V0

c20−c0
V0

]
u,

y =
[

1
2θ 0
0 1

]
x,

(3.109)

where x =
[
δV, δc

]T , y =
[
δF, δc

]T , u =
[
δF1, δF2

]T and θ =
√

V0S
k .

The plant model linearised at a nominal point (F1(0) = 1.5 m3/min, F2(0) =
2.0 m3/min, F (0) = 3.5 m3/min, c1(0) = 1 kmol/m3, c2(0) = 2 kmol/m3,
c(0) = 1.57 kmol/m3, V0/F0 = 1 min) is

ẋ =
[−0.01 0

0 −0.02

]
x +

[
1 1

−0.25 0.75

]
u,

y =
[

0.01 0
0 1

]
x.

(3.110)

Denote G(s) as the transfer function of the above nominal system. The un-
certain plant Gt(s) ∈ Π due to the uncertainties in c1 and c2. The gain of the
linear uncertainty ∆L(s) = [Gt(s)−G(s)]G(s)−1 can be large at low frequen-
cies when c1 and c2 change significantly. At the nominal operating point, c1
is less than and c2 is greater than the concentration c in the outlet stream.
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It is found that if c1 changes in the interval [0, 1] and c2 changes in the in-
terval [2,+∞) simultaneously, then the uncertainty ∆L(s) is passive at any
frequency. If 0 < c1 < 1.57 and 1.57 < c2 < 2, then the linear uncertainty is
near-passive.

Design specifications

It is required to control the product concentration and the flow rate at the
nominal operating point to meet the following specifications:

Robust stability: The closed-loop system should be stable for

1. The uncertainty ∆L(s) caused by variations in both inlet concentrations:
c1(t) ∈ [0.5, 1.2] kmol/m3 and c2(t) ∈ [1.7, 3.0] kmol/m3.

2. Unstructured uncertainty ∆N (s) arising from neglected high-order dy-
namics. The overall multiplicative uncertainty ∆(s) is the total effect of
∆L(s) and ∆N (s) and is found to be bounded by

σ̄ [∆(jω)] ≤
∣∣∣∣ jω + 22.5

15

∣∣∣∣ . (3.111)

While the uncertainty has large gain at low frequencies (150% at steady
state), it is near-passive in the low-frequency band:

νFB− (∆ (s) , 0, 3) = 0.6. (3.112)

Performance:

1. The steady-state offset is less than 1/1000 of the disturbance value.
2. Disturbances should be rejected within 5 minutes.

Control design

Following the design procedure given in Section 3.4.2, the weighting functions
W1(s) and W2(s) are chosen as follows to meet the performance and robust
specifications:

W1(s) =

[
1000(s+2)

(s+0.001)(s+30)2 0

0 1000(s+2)
(s+0.001)(s+30)2

]
, (3.113)

W2(s) =
[ 100s+1

s+200000 0
0 100s+1

s+200000

]
. (3.114)

The controller is obtained by solving Problem 3.23. The controller parameters
can be downloaded from the companion website for the book. The singular
value plot of the controller is shown in Figure 3.17. The frequency-dependent
IFP index of system T (s) (“seen” by the uncertainty) is shown in Figure 3.18,
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Fig. 3.17. Singular values of the controller [9]

which shows that system T (s) has excessive IFP at low frequencies up to 20
rad/min and is nonpassive at higher frequencies where the small gain condi-
tion applies. The singular value plot of the sensitivity function, which indicates
the nominal performance, is shown in Figure 3.19, which shows that the band-
width of the sensitivity function is similar to the frequency band over which
the excessive IFP of T (s) is achieved.

Simulation results

Closed-loop simulation using the nonlinear model and the passivity-based con-
troller has been performed. Assume that at the 5th minute, c1 decreases from
1 kmol/m3 to 0.5 kmol/m and c2 increases from 2 kmol/m3 to 3 kmol/m3.
The controller outputs are shown in Figure 3.20. The control errors in the
outlet concentration are shown in Figure 3.21.

An H∞ controller cannot achieve the required performance specification
because of the large uncertainty at low frequencies. If the allowed variations of
c1 and c2 are limited to a smaller range, e.g., 0.6 < c1 < 1.2 and 1.7 < c2 < 2.6,
then the required performance can be achieved by an H∞ controller.

3.5 Passive Controller Design

Certain classes of process systems, including some mechanical systems (e.g.,
[126, 136]) and certain thermodynamic systems (e.g., [144]) are inherently



3.5 Passive Controller Design 81

10
4

10
2

10
0

10
2

10
4

0.4

0.2

0

0.2

0.4

0.6

0.8

1

Frequency (rad/min)

ν
F
(T

(s
),
ω
)

Fig. 3.18. IFP index of T (s)
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passive. They can be robustly stabilized by strictly passive (or strictly positive
real) linear controllers.

Based on [148] and [150], this section presents an approach to synthesis
of strictly positive real (SPR) controllers that achieve H∞ performance. As
we have learned in previous sections, both the SPR and H∞ conditions can
be written as LMIs by using the positive-real lemma and the bounded-real
lemma. Either of the two conditions is a convex problem and can be solved
using SDP techniques. However, to solve both conditions simultaneously is
a very difficult task. Existing multi-objective design methods (e.g., [41, 62])
do not apply to the SPR/H∞ control problem because the SPR and H∞
conditions are formulated for different systems (the H∞ condition for the
closed-loop system and the SPR condition for the controller only).

There are few SPR/H∞ control synthesis methods available. The ad hoc
approaches for SISO systems were developed by Chen and Wen [29]. Geromel
and Gapski proposed to incorporate H∞ constraints into an existing SPR/H2

method [42]. This approach assumes an LQG controller structure and requires
simplifying assumptions on the generalized plant models (e.g., no correlation
between measurement noise and disturbances and no cross product terms
relating the control actions and states in the cost function, etc.). Many gener-
alized plants arising from H∞ performance specifications do not satisfy these
assumptions, and therefore, these problems cannot be solved using the above
approach.

In this section, we present a multivariable SPR/H∞ control design ap-
proach, which does not require the assumptions in [42]. Only process stabi-
lizability and detectability are required. This approach was first presented in
[150] and was detailed in [148].

3.5.1 Problem Formulation

The SPR/H∞ control problem can be formulated as follows: Given an LTI
generalized plant model:

P (s) :

⎧⎨⎩
ẋ = Ax + B1w + B2u
z = C1x + D11w + D12u
y = C2x + D21w + D22u,

(3.115)

where x ∈ Rn, y ∈ Rm, u ∈ Rm, z ∈ Rp, w ∈ Rq, find an SPR controller
K(s) := (Ak, Bk, Ck, Dk) such that the H∞ norm of the closed-loop system
from w to z is bounded, i.e.,

‖Tzw‖∞ < 1. (3.116)

Similar to the approach presented in Section 3.3.4, we find all-solution con-
trollers satisfying the H∞-performance specification which are parameterized
by a free stable contraction map:
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K(s) = Fl (F (s), U(s)) , (3.117)

where F (s) is the all-solution controller parametrization and U(s) is a con-
traction map (‖U‖∞ < 1). The SPR/H∞ controller can be obtained by find-
ing a stable contraction map U(s) such that K(s) = Fl (F (s), U(s)) is SPR.
This involves solving a BMI problem with the passive controller constraints
represented using the positive-real lemma (Lemma 2.16).

3.5.2 Contraction Map

The dynamics of the contraction map U (s) are absorbed into the final con-
troller K (s). Therefore, to reduce the controller order to the minimum level,
a constant contraction map U (s) = Q, Q ∈ Rm×m is assumed. Suppose that
F (s) has the following two-port form:

F (s) :=

⎡⎣ AF B1F B2F

C1F D11F D12F

C2F D21F D22F

⎤⎦ . (3.118)

Then, the controller K (s) has the following state-space representation:

Ak = AF + B2F QC2F ,

Bk = B1F + B2F QD21F ,

Ck = C1F + D12FQC2F , and
Dk = D11F + D12FQD21F .

(3.119)

The constraint on the contraction map U(s) (‖U(s)‖∞ < 1) can be written in
the following LMI: [

I QT

Q I

]
> 0. (3.120)

3.5.3 Synthesis of SPR/H∞ Control

From the positive-real lemma, the controller K(s) := (Ak, Bk, Ck, Dk) is SPR
if the following matrix inequality holds:[

AT
k P + PAk PBk − CT

k

BT
k P − Ck −Dk −DT

k

]
< 0. (3.121)

Define

Ψk =
[
AT

F P + PAF PB1F − CT
1F

BT
1FP − C1F −D11F −DT

11F

]
, (3.122)

Z =
[
C2F D21F

]
, (3.123)

PF =
[
BT

2F −DT
12F

]
, and (3.124)

Pk = PF

[
P 0
0 I

]
. (3.125)
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From (3.119) and (3.121),

Ψk + ZTQTPk + PT
k QZ < 0. (3.126)

Therefore, the SPR/H∞ controller can be obtained by solving (3.120) and
(3.126) simultaneously for the constant contraction map Q and the Lyapunov
matrix P . This is a BMI problem because (3.126) has bilinear terms in two
decision variables, Q and P . A solution to this type of problem is given in
Section A.1.

By choosing a constant contraction map, the computational load is sig-
nificantly reduced because the BMI constraint on H∞ performance becomes
an LMI. In addition, this treatment leads to SPR/H∞ controller designs with
the same order as the generalized plant.

3.5.4 Control Design Procedure

The design procedure of SPR/H∞ control [148] is as follows:

Procedure 3.25 (SPR/H∞ control synthesis)
1. Obtain the all-solution controller parameterization F (s) for the gener-

alized plant P (s) using a standard H∞ solver.
2. Solve (3.120) and (3.126) simultaneously for the constant contraction

map Q and Lyapunov matrix P .
3. Obtain the final controller K(s) = Fl (F (s), Q).

The second step is most important in the control design procedure. It
requires implementing of the following iterative approach to the BMI problem.

1. Specify nI as the maximum number of iterations allowed.
2. Start with a central H∞ controller, i.e., Q0 = 0, and set counter i = 1.
3. Calculate Ki(s) := (Ak, Bk, Ck, Dk) using (3.119).
4. Solve the following generalized eigenvalue problem for αi, Pi and Yi:

min
Pi,Yi

{αi}
subject to[

AT
k Pi + PiAk PiBk − CT

k

BT
k Pi − Ck −Dk −DT

k

]
< αi

[
Pi 0
0 Yi

]
, (3.127)

Pi > 0, (3.128)
Yi > 0. (3.129)

5. With αi fixed, solve the following optimization problem for Pi and Yi:
min
Pi,Yi

{Tr (Pi) + Tr (Yi)}
subject to
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AT

k Pi + PiAk − αiPi PiBk − CT
k

BT
k Pi − Ck −Dk −DT

k − αiYi

]
< 0, (3.130)

Pi > 0, (3.131)
Yi > 0. (3.132)

6. With Pi and Yi fixed, solve the following optimization problem for αi and
Qi:
min
Qi

{αi}
subject to [

T1,i T2,i

T3,i T4,i

]
< 0, (3.133)[

I QT
i

Qi I

]
> 0, (3.134)

where

T1,i = AT
F Pi + PiAF + CT

2F QT
i BT

2FPi + PiB2FQiC2F − αiPi,

T2,i = PiB1F + PiB2FQiD21F − CT
1F − CT

2F QT
i DT

12F ,

T3,i = BT
1FPi + DT

21FQT
i BT

2FPi − C1F −D12FQiC2F , and

T4,i = −D11F −DT
11F −D12FQiD21F −DT

21FQT
i DT

12F − αiYi.

7. If αi < 0, the algorithm converges to a feasible solution Q = Qi. The
solution is found. Stop.
If αi ≥ 0:

If i ≤ nI , let i = i + 1 and then go to step (c).
Otherwise, the control synthesis problem cannot be efficiently solved
using the proposed algorithm.

For all iterative methods tackling BMI problems, global convergence can-
not be guaranteed. In the SPR/H∞ control problem, a global optimum is
often not a major concern provided that a local minimum of α < 0 can be
found. By alternately minimizing α and Tr (P ) + Tr (Y ), the convergence of
the proposed algorithm is expedited. As in any iterative method, the choice of
the initial point is important for the effectiveness and efficiency of the iterative
algorithm. Our experience indicates that the central H∞ controller (Q = 0)
is a good starting point.

3.5.5 Illustrative Example

We illustrate the above control design approach using the multivariable passive
process system given in [127]. This process can be robustly stabilized by an
SPR controller. With the H∞ performance specification, this process has the
following augmented plant:
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A = AT =

⎡⎢⎢⎣
−1.9092 −1.4588 −1.0902 −1.6758
−1.4588 −1.9149 −0.7137 −1.4493
−1.0902 −0.7137 −0.8758 −0.7530
−1.6758 −1.4493 −0.7530 −1.7289

⎤⎥⎥⎦ ,

B1 = CT
1 =

⎡⎢⎢⎣
0.9516 0.4010 0.0431 0.4776
0.2603 0.4866 0.3709 0.1291
0.5147 0.7505 0.6933 0.4838
0.6363 0.1262 0.9358 0.9456

⎤⎥⎥⎦ ,

(3.135)

D11 = DT
11 =

⎡⎢⎢⎣
0.8437 0.9280 0.7998 0.4248
0.9280 0.4022 0.1510 0.6874
0.7998 0.1510 0.0430 0.7157
0.4248 0.6874 0.7157 0.4577

⎤⎥⎥⎦ ,

B2 = CT
2 =

⎡⎢⎢⎣
0.3677 0.1779
0.3285 0.6908
0.7729 0.2639
0.2973 0.4577

⎤⎥⎥⎦ , and D12 = DT
21 =

⎡⎢⎢⎣
0.5369 0.2923
0.0665 0.2897
0.4939 0.7538
0.4175 0.0968

⎤⎥⎥⎦ .

The SPR/H∞ controller is obtained using Procedure 3.25. The details of
the controller parameters are available from the companion website for the
book. The singular value plot of the resulting SPR/H∞ controller is shown
in Figure 3.22. The IFP index plot of the controller is shown in Figure 3.23.
It is observed that αi oscillates above zero at the beginning and then mono-
tonically decreases below zero with 19 iterations. The H∞-norm performance
achieved by a controller without the SPR condition is ‖Tzw‖∞ = 4.8. The SPR
controller achieves slightly poorer performance ‖Tzw‖∞ = 6.3 but guarantees
robust stability due to the inherent passivity of the process.

3.6 Summary

The robust control approaches based on the passivity framework are presented
in this chapter. They include (1) a control design method based on simultane-
ous IFP and OFP bounds of the uncertainties, (2) an approach that combines
the passivity condition with the small gain condition in different frequency
bands and (3) a passive H∞ control synthesis method that achieves robust
stability for any passive processes. To reduce the conservativeness of control
design, frequency-dependent passivity indices are used. In the derivations of
detailed algorithms, multiplicative uncertainty is assumed. However, imple-
mentation of the framework for other types of uncertainty structure can be
obtained in a similar manner.
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Fig. 3.22. Singular values of the SPR controller
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Passivity-based Decentralized Control

A passive process can be stabilized by a decentralized passive controller.
Therefore, the degree of passivity can imply how interactions between different
loops in a multivariable process can affect the stability of the decentralized
control system. In this chapter, an interaction analysis approach based on
passivity is introduced. This includes steady-state and dynamic interaction
analysis for both multiloop (fully decentralized) control and multi-unit (block
diagonal) control. Passivity-based decentralized control design approaches are
also presented.

4.1 Introduction

The linear decentralized control problem can be described as follows: Assume
that the full plant is represented by an m × m rational transfer function
G(s) that maps the input vector u =

[
u1, u2, . . . , um

]T to the output vector

y =
[
y1, y2, . . . , ym

]T :

G (s) =

⎡⎢⎢⎢⎢⎣
g11(s) g12(s) · · · g1m(s)

... g22(s) · · · g2m(s)

gm−1,1(s)
...

. . .
...

gm1(s) · · · gm,m−1 gmm(s)

⎤⎥⎥⎥⎥⎦ , (4.1)

and the diagonal (or block diagonal) system is denoted as

Gd(s) = diag {g11(s), g22(s), · · · , gii(s), · · · , gmm(s)} . (4.2)

The decentralized controller is a diagonal (or block diagonal) system:

C(s) = diag {c1(s), . . . , ci(s), . . . , cm(s)} , (4.3)

such that the ith controller ci(s) is designed based on model gii(s) and controls
yi by manipulating ui (i = 1 . . .m).
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Decentralized control for multivariable systems is dominant in industrial
process control applications due to their simplicity [112]. There are fewer
communication links required and fewer controller parameters that need to
be chosen, compared to the full multivariable control system. If the controller
blocks are designed properly, it is generally easier to achieve better failure
tolerance with a decentralized control structure. However, as each decentral-
ized controller acts only based on the feedback in its own loop or block, the
decentralized structure inevitably leads to performance deterioration due to
interactions between loops and blocks. If interactions are not considered in
the controller design, one may even risk instability of the closed-loop system.
Therefore, interaction analysis is important in decentralized control.

The relative gain array (RGA) [23] and the block relative gain array
(BRGA) [81] are commonly used interaction measures. They are simple, since
only steady-state information is required, but cannot be used to infer the
stabilizability of process systems using decentralized controllers (referred to
as decentralized stabilizability). To overcome the above deficiencies, methods
using dynamic models of the processes were developed [63, 84]. Rosenbrock
[99] generalized and extended the classical Bode-Nyquist design paradigms to
give conditions for diagonally decentralized stability in the gain space. An-
other approach to interaction analysis is based on the robust decentralized
control framework [47], where the interactions were modelled as uncertainty,
and an interaction measure was proposed based on structured singular values.

The passivity theory provides a different avenue toward interaction analy-
sis. As we learned in Chapter 2, the supply rate for passive systems is defined
as w(t) = yT (t)u(t) (where y, u ∈ Rm). Therefore the positive real condition
(as given in (2.45)),∫ t1

t0

yT (t)u(t)dt =
∫ t1

t0

m∑
i=1

yi(t)ui(t)dt � 0, (4.4)

actually defines the relationship between the ith output yi(t) and ith input
ui(t) (rather than cross terms of yi(t)uj(t), i �= j) of the process. (This is no
longer valid when the supply rate is w(t) = yT (t)Su(t) with a full matrix S.)
Not surprisingly, there is a connection between passivity and decentralized
control: if the process is strictly passive, it can be stabilized by any decentral-
ized passive controller. Such a controller can be multiloop or block diagonal.

If the magnitude of the diagonal elements of G(s) in (4.1) is significantly
larger than that of the off-diagonal ones, e.g.,

|Gii (jω)| >
m∑

j=1, j �=i

|Gij (jω)| , ∀ i, ∀ ω, (4.5)

then the process is said to be diagonally dominant. Obviously, diagonally dom-
inant processes can often be effectively controlled by decentralized controllers
because they have small loop interactions. While the passivity condition guar-
antees the decentralized stability of the decentralized control system, it does
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not imply diagonal dominance. For example, the following system:

G(s) =
[ 1

s+1 −a

a 2
s+2

]
, (4.6)

with a large value of a is not diagonally dominant. However, it is easy to
verify that G(s) is strictly input passive for any a and could be stabilized
by any passive decentralized controller. It was pointed out by Campo and
Morari [26] using a counterexample that diagonal dominance is not necessary
for decentralized stabilizability. It is the magnitude of interactions and also the
way the subsystems interact with each other that may cause stability problems
in decentralized feedback control. Passivity is related to the phase condition
of the entire process system with the presence of the interaction between
subsystems and loops. Therefore, it is possible to develop a passivity-based
interaction analysis which indicates the destabilizing effect of the interactions.

There are two main issues in decentralized control [87]. The first is the
pairing problem, i.e., to decide which set of measurements (plant outputs)
yi should be controlled by which set of manipulated variables (plant inputs)
ui. Different pairings for the same plant may lead to quite different stability
and performance results of decentralized control. So a pairing scheme should
be chosen that is physically feasible and enables good control performance.
An important concept is decentralized integral controllability (DIC). It ad-
dresses the closed-loop performance that a process can achieve under decen-
tralized control and thus can be used in determining workable pairings. For
highly coupled processes or multi-unit processes, a block decentralized con-
trol structure that consists of multiple multivariable subcontrollers should
be considered. Therefore, interaction analysis for a block decentralized con-
trol structure, which is defined as block decentralized integral controllability
(BDIC), is introduced [151].

The second issue in decentralized control is to design individual control
loops (or blocks). This involves dynamic interaction analysis and decentral-
ized control design that guarantees closed-loop system stability and achieves
certain performance specifications.

In the following sections, sufficient conditions for DIC and BDIC are de-
veloped on the basis of passivity. The DIC condition is then extended to non-
linear systems. Then we show how the concept of passivity is used in dynamic
interaction analysis and decentralized control design.

4.2 Decentralized Integral Controllability

DIC analysis determines whether a multivariable plant can be stabilized by
multiloop controllers, whether the controller can have integral action to ensure
zero steady-state error and whether the closed-loop system will remain stable
when any subset of loops is detuned or taken out of service. DIC can be defined
as follows:
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Definition 4.1 (Decentralized integral controllability [114]). A multi-
variable process with a transfer function G(s) ∈ Cm×m is decentralized integral
controllable (DIC) if there exists a decentralized controller with integral action
in each loop, such that the feedback system is stable and such that each individ-
ual loop may be detuned independently by a factor εi (0 ≤ εi ≤ 1, i = 1 . . .m)
without introducing instability.

DIC is a property of a given plant in combination with some prespecified
control structure including manipulated/controlled variable pairings, indepen-
dent of the controllers. If a system is DIC, then it is possible to achieve stable
and offset-free control of the overall closed-loop system by tuning every loop
separately. A different process pairing scheme will lead to a different process
model G (s) — when process inputs and outputs are swapped, so are the cor-
responding columns and rows in the transfer function G (s). Clearly, an ideal
pairing should lead to a process model which is DIC. A number of necessary
and sufficient DIC conditions have been reported in the literature [75, 113].
The most widely used DIC analysis methods are based on interaction mea-
sures (e.g., [47, 87, 113]) which imply that a system is DIC if it is generalized
diagonally dominant:

Theorem 4.2 (Small gain-based sufficient condition for DIC [87]).
An LTI stable process G(s) is DIC if it is generalized diagonally dominant in
steady state, i.e.,

µ̄ (Ed(0)) < 1, (4.7)

where Ed(s) = [G(s) −Gd(s)]G−1
d (s) and Gd(s) consists of the diagonal

transfer functions of G(s) and µ̄ (Ed(0)) is the upper bound of the diagonally
structured singular value of Ed(0).

Necessary conditions for DIC are useful in screening out unworkable pair-
ings and/or process designs. An easy-to-use necessary condition was derived
based on the RGA:

Theorem 4.3 (Necessary condition for DIC[87]). An m×m LTI stable
process G(s) is DIC only if

λii (G(0)) ≥ 0, ∀ i = 1, . . . ,m, (4.8)

where λii (G(0)) is the ith diagonal element of the RGA matrix of G(0).

In this section, we introduce a passivity-based DIC analysis developed by
the first author and his co-workers. Based mainly on [12], we will show how
the concept of passivity is linked with DIC and can be used to determine the
DIC property of a given process.
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Fig. 4.1. Decentralized integral controllability

4.2.1 Passivity-based DIC Condition

As shown in Figure 4.1, the decentralized controller C (s) is decomposed into
C (s) = N (s)Kg/s, where N(s) ∈ C

m×m is diagonal, stable and does not
contain integral action, and Kg = diag {ki}, i = 1, . . . ,m. The problem of
DIC can be interpreted as whether the closed-loop system of Kg/s and system
P (s) = G (s)N (s) is stable and remains stable when Kg is reduced to

Kgε = diag{kiεi}, 0 ≤ εi ≤ 1, i = 1, . . . ,m. (4.9)

Since the Passivity Theorem can deal with systems that have unlimited gain
(e.g., controllers with integral action), it can be used directly to analyse de-
centralized stability by simply examining the open-loop systems of C(s) and
G(s). The following m×m system

K(s) =
1
s
Kg =

1
s

diag {ki} , ki ≥ 0, i = 1, . . . ,m, (4.10)

has m nonrepeated poles at s = 0. From Definition 2.24, K (s) is positive real
and remains positive real when the gain matrix Kg is reduced to Kgε as in
(4.9). Therefore, the closed-loop system in Figure 4.1 will be stable if P (s) is
strictly positive real. As a special case (N(s) = I), if G(s) is strictly positive
real, regardless of the interactions between different channels of the process
system, it can be stabilized by any positive real controllers, including K(s)
defined in (4.10), and this leads to the conclusion that G(s) is DIC.

Many processes are not strictly positive real and thus cannot be analysed
directly by using the Passivity Theorem. The conservativeness of the above
passivity-based condition can be reduced by

1. rescaling the process transfer function;
2. combining the positive-real condition with the small gain condition, sim-

ilar to Theorem 3.21.

If the process is stable, only the positive real condition in steady state
needs to be considered for DIC, as shown in the following theorem:
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Theorem 4.4 (Passivity-based sufficient condition for DIC [12]). A
stable linear multivariable process with a transfer function G(s) ∈ Cm×m is
DIC if a real diagonal matrix D = diag {di} (di �= 0, i = 1 . . .m) can be found
such that

G(0)D + DGT (0) ≥ 0, (4.11)

where G(0) is the steady-state gain matrix.

The proof of the above theorem was originally published in [12] and has
been included in Section B.2 for completeness.

Theorem 4.4 can be seen as a special case of Theorem 3.21. It is only a
sufficient condition because it is based on the positive real condition (Passivity
Theorem) which itself is a sufficient stability condition for interconnected sys-
tems. The positive real condition could be conservative because it guarantees
the stability of interconnected systems for any gain conditions. However, when
one of the subsystems has infinite gain (e.g., having integral action), then the
positive real condition is far less conservative. The above passivity-based DIC
condition is very tight and less conservative than the small gain-based condi-
tion (as shown in Example 4.6). Inequality 4.11 is actually the positive real
condition on the steady-state gain matrix G(0) with a rescaling matrix D.
Matrix D = diag {di} (i = 1, . . . ,m) rescales G(0) and adjusts the sign of
each column of G(0) such that the diagonal elements of G(0)D are positive.
Matrix D will then be absorbed by the decentralized controller because D is
diagonal and constant. Therefore, control loop i should be reverse acting if
sign (di) > 0 and direct acting if sign (di) < 0.

4.2.2 Computational Methods

Here we present two computational methods for checking the condition given
in Theorem 4.4:

Semidefinite programming

A feasibility problem with a linear matrix inequality (LMI) can be set up with
a real and diagonal matrix decision variable D. A matrix D which satisfies
(4.11), if it exists, can be found by using the semidefinite programming (SDP)
technique. The decision variable can be rewritten in the following form [21]:

D = U0 +
q∑

j=1

xjUj , (4.12)

where xj ∈ R, and Uj ∈ Rm×m are sparse constant matrices with only one
nonzero element “1” located at the position corresponding to one nonzero
element of D. Therefore, the decision variable D can be written as an affine
function of a number of scalar variables xj (j = 1, . . . , q) while its prespecified
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diagonal structure is represented by a series of matrices Uj (j = 1, . . . , q). The
LMI problem formulated above, with the structural constraint on decision
variable D, is convex and can be solved by using any SDP software package,
including MATLAB� LMI Toolbox (which is later renamed as LMI Lab and
included in the Robust Control Toolbox ). This approach is numerically efficient
and reliable for the positive definite condition

G(0)D + DGT (0) > 0, (4.13)

but may encounter numerical problems when the minimum eigenvalue of[
G (0)D + DGT (0)

]
is zero.

Structured singular value approach

To avoid the numerical problem in the SDP approach, we can convert the
positive real condition in (4.11) into a gain condition by using the Cayley
transformation given in (3.63) and then checking the structured singular value
of the transformed steady-state gain matrix. Define a diagonal sign matrix
V = sign(Gd(0)). The ith element of V is +1 (or −1) if the ith element
of Gd(0) is positive (or negative). Therefore G+ (0) = G(0)V is the modified
gain matrix such that all diagonal elements of G+ (0) are positive. Because the
sign matrix has been absorbed into the steady-state gain matrix, the decision
variable should now be D+ = DV > 0. Clearly, from Theorem 4.4, G(s) is
DIC if G+ (0) is nonsingular and a real and positive definite diagonal matrix
D can be found such that,

G+ (0)D+ + D+
[
G+ (0)

]T ≥ 0. (4.14)

Following a proof similar to [26], the following proposition can be proved:

Proposition 4.5. Define H = [I −G+ (0)] [I + G+ (0)]−1 and F = (D+)−
1
2 .

Inequality 4.14 holds (thus G(s) is DIC) if and only if

σ̄
{
FHF−1

} ≤ 1, (4.15)

where σ̄ {·} denotes the maximum singular value.

The maximum singular value σ̄
{
FHF−1

}
is actually the upper bound

of the diagonally scaled structured singular value of H . Therefore, Proposi-
tion 4.5 gives a computational method for checking the DIC condition. Pro-
cedures to calculate structured singular values can be used to test (4.15).
In MATLAB� Robust Control Toolbox, this can be done by using the func-
tion PSV, which calculates the maximum diagonally scaled structured singular
value via the Perron eigenvector approach.

Example 4.6 ([26]). Consider a system with the following transfer function:
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G(s) =

⎡⎣ 1 0 2
1

s+1 1 −4s
s+1

0 4 1

⎤⎦ , (4.16)

with steady-state gain matrix given by

G (0) =

⎡⎣ 1 0 2
1 1 0
0 4 1

⎤⎦ . (4.17)

Here we test the DIC conditions mentioned in this section:

1. RGA-based necessary condition (Theorem 4.3): The RGA matrix of G (0)
is

Λ (G (0)) =

⎡⎣ 1/9 0 8/9
8/9 1/9 0
0 8/9 1/9

⎤⎦ . (4.18)

Because all diagonal elements are positive, this process may be DIC.
2. Small gain-based sufficient condition (Theorem 4.2):

Ed(0) = [G(0) −Gd(0)]G−1
d (0) =

⎡⎣ 0 0 2
1 0 0
0 4 0

⎤⎦ . (4.19)

Because µ̄ (Ed (0)) = 2 > 1, the small gain-based condition is not satisfied.
3. The strictly positive real condition in (4.13): G(0) has two imaginary

eigenvalues and thus there does not exist a matrix D that satisfies (4.13).
4. Passivity-based DIC condition (Theorem 4.4): Using the Cayley transfor-

mation,

H =
[
I −G+ (0)

] [
I + G+ (0)

]−1

=

⎡⎣− 1
2 1 − 1

2− 1
4 − 1

2
1
4

1
2 −1 − 1

2

⎤⎦ .
(4.20)

It can be found that µ̄ (H) = 1. One of the possible values of the diagonal
scaling matrix is

F =

⎡⎣ 1 0 0
0 2 0
0 0 1

⎤⎦ . (4.21)

Thus there exists a matrix

D+ = (FF )−1 =

⎡⎣ 1 0 0
0 1

4 0
0 0 1

⎤⎦ ,

such that (4.14) is satisfied. This leads to the conclusion that this process
is DIC.
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The above process was found to be DIC [26]. This example shows that
the passivity-based DIC condition (Theorem 4.4) is less conservative than the
small gain-based condition.

4.3 DIC Analysis for Nonlinear Processes

Since the concept of passivity applies to both linear and nonlinear systems,
passivity-based DIC analysis can be extended to nonlinear processes. Because
most chemical processes are nonlinear, the usual practice is to perform the DIC
analysis based on linearised models. However, this approach could produce
misleading results because they may indicate only controllability within a
small neighbourhood around the operating point [89]. When dealing with
processes with high nonlinearity, a DIC condition that can be used to analyse
nonlinear processes is useful. In this section, we present the nonlinear version
of the sufficient condition for DIC. This section is based mainly on [119].

4.3.1 DIC for Nonlinear Systems

Similar to the linear version, the DIC property of nonlinear systems indicates
whether a nonlinear multivariable process can be stabilized by multiloop lin-
ear or nonlinear controllers with integral action to ensure zero steady-state
error and whether the closed-loop remains stable when any subset of loops is
arbitrarily detuned. As in the linear DIC analysis, we consider only “square”
processes (i.e., the system has the same number of inputs and outputs). Con-
sider the following nonlinear model described by the following equations with
an input vector u ∈ R

m, an output vector y ∈ Rm and a state vector x ∈ Rn:

G :
{

ẋ = f(x, u)
y = g(x, u). (4.22)

The control system has the same configuration as in Figure 4.1 except that
both the controller and process are nonlinear. The decentralized nonlinear
controller C with integral action includes three components: the stable di-
agonal nonlinear controller N , the gain matrix Kg = diag{ki} (ki > 0,
i = 1, 2, · · · ,m) and the integrator. However, different from the linear DIC
analysis, the stability for nonlinear systems has to be analysed for a particular
equilibrium point. It is assumed that the state x(t) is uniquely determined by
its initial value x(0) and the input function u(t).

Another assumption made for convenience is that the system (4.22) has
equilibrium at the origin, that is

f(0, 0) = 0 and g(0, 0) = 0. (4.23)

If the equilibrium xe is not at the origin, a translation is needed by redefining
the state x as x− xe. The nonlinear DIC is defined as follows:
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Definition 4.7 (Decentralized integral controllability for nonlinear
processes [119]).
Consider the closed-loop system shown in Figure 4.1. For the nonlinear process
G described by (4.22),

1. If there exists a decentralized integral controller C, such that the unforced
closed-loop system (r = 0) is globally asymptotically stable (GAS) for
the equilibrium x = 0 and such that the globally asymptotic stability is
maintained if each individual loop of controller C is detuned independently
by a factor εi (0 ≤ εi ≤ 1, i = 1, · · · ,m), then the nonlinear process G
is said to be decentralized integral controllable(DIC) for the equilibrium
x = 0.

2. If the closed-loop system is asymptotically stable (AS) near the region of
the equilibrium x = 0, then the nonlinear process G is said to be locally
decentralized integral controllable (LDIC) around the equilibrium x = 0.

From the above definition, it is obvious that the process G has to be GAS
around the equilibrium x = 0 to be DIC. System N is generally nonlinear. If
a linear diagonal system N can be found such that the closed-loop stability
in the above DIC definition can be achieved, then this process is said to
be DIC by using a linear controller. This is a desirable property as linear
control systems usually have substantially lower design, implementation and
maintenance demands than nonlinear control systems [89]. The definition of
local DIC is concerned only with the vicinity of the equilibrium point, which
can often be assessed by testing the linear DIC condition in (4.11) on the
linearised models around a particular equilibrium point.

4.3.2 Sufficient DIC Condition for Nonlinear Processes

The sufficient DIC condition for nonlinear systems was given in [119]. Similar
to the conditions for linear processes, the DIC property of a nonlinear process
can be determined based on its input-output relationship at steady state.

Define K ′
gε = diag{εiki} (where εi is the detuning factor for the ith loop)

and Kgε = ηK ′
gε (where η is a small positive real scalar). The elements of

diagonal matrix Kg = diag{ki} are adjusted such that ki > 0 ∀ i = 1, . . . ,m.
The sign adjustment is absorbed into the diagonal controller N . Assume that
the state equation of the generalized process P , which is the serial connec-
tion of process G and the diagonal controller N (as shown in Figure 4.1), is
modelled as

P :
{

ẋ = f(x, u1)
y1 = g(x, u1).

(4.24)

The state equation for the linear integral controller is expressed as

Cl :
{

ξ̇ = ηK ′
gεu2

y2 = ξ.
(4.25)
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The sufficient DIC condition for nonlinear processes can be presented as fol-
lows:

Theorem 4.8 (DIC conditions for nonlinear processes [119]). Con-
sider the closed-loop system in Figure 4.1. Assume that the generalized process
P and the linear part of the controller Cl are described by (4.24) and (4.25),
respectively. The nonlinear process G is DIC for the equilibrium x = xe if
a decentralized controller N can be found such that the generalized plant P
satisfies all of the following conditions:

1. The equation 0 = f(x, u1) obtained by setting η = 0 in (4.24) implicitly
defines a unique C2 function x = h(u1) for u1 ∈ U1 ⊂ Rm.

2. For any fixed u1 ∈ U1 ⊂ Rm, the equilibrium xe = h(u1) of the system
ẋ = f(x, u1) is GAS and locally exponentially stable (LES) (as defined in
Definition 2.2).

3. The steady-state input output function g (h (u1) , u1) of the generalized pro-
cess P satisfies the following conditions:

uT
1 g(h(u1), u1) > 0 (4.26)

(when u1 �= 0 and u1 ∈ U1), and

uT
1 g(h(u1), u1) ≥ ρ|u1|2 (4.27)

(for some scalar ρ > 0) for u1 in a neighbourhood of u1 = 0.

The proof of the above theorem was originally published in [119] and is
included in Section B.3. Although the theorem is proved using the Singular
Perturbation Theorem [70] for the sake of rigorousness, the key conditions in
(4.26) and (4.27) are a strictly input passivity condition on the steady-state
input output function g (h (u1) , u1).

The conditions associated with Theorem 4.8 are all for the general process
P (which is the serial connection of process G and the diagonal controller
N) rather than the nonlinear plant G. To verify the above DIC conditions,
a diagonal nonlinear controller N needs to be constructed. Searching for a
linear diagonal system N is often attempted first because it is much easier to
develop than a nonlinear system. In this case, the overall controller will be
linear.

If we denote G0 as the steady-state gain matrix of the linearised model of
G around the equilibrium, and simply choose N as a real diagonal matrix D,
then (4.26) and (4.27) are reduced to the existence of a real diagonal matrix
D = diag{di} (di �= 0, i = 1, . . . ,m) such that

G0D + DGT
0 > 0, (4.28)

which is a sufficient condition for local DIC. This is the linear DIC condition
given in Theorem 4.4. If there does not exist a D matrix such that (4.28)
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is satisfied, then the global conditions in Theorem 4.8 do not hold. Because
the local DIC condition is usually much easier to test, it can be used as a
necessary condition for Theorem 4.8 (Note: Not the necessary condition for
DIC because Theorem 4.8 itself is a sufficient condition for DIC).

The necessary conditions for linear processes (e.g., Theorem 4.3) can be
used as necessary conditions for nonlinear DIC. They are particularly useful
in the nonlinear case because Theorem 4.8 could be difficult to test. A mild
necessary condition of process P being DIC for both local and global around
the equilibrium can be drawn from Theorem 8 in [26]. By using singular
perturbation analysis [70], it can be found that the above linear necessary
DIC conditions are necessary conditions for local nonlinear DIC.

4.3.3 Computational Method for Nonlinear DIC Analysis

Similar to other nonlinear analysis, a test of the DIC conditions of Theorem 4.8
analytically is often difficult and sometimes even impossible. For physical
processes, the DIC analysis needs to be performed only for the operating
region of interest instead of a “theoretical” global space. In this section, the
computational method to assess the DIC for a given nonlinear process G :
u → y, within the operating region of u ∈ U ⊂ Rm, y ∈ Y ⊂ Rm, with respect
to the steady-state equilibrium point (ue, ye) is as follows:

Procedure 4.9 (Numerical analysis of nonlinear DIC [119])
1. Check the stability (GAS and LES) of the nonlinear process G (Con-

dition 2 of Theorem 4.8). If process P is unstable, it is not DIC.
2. Linearise the nonlinear process G around the equilibrium point, and

check whether the steady-state gain matrix G(0) of the linearised model
satisfies the necessary conditions for linear systems (e.g., the necessary
conditions in [26, 76, 145]). If any of these necessary conditions are
not satisfied, then process G is not DIC. Otherwise, proceed to the next
step.

3. Test the sufficient condition for linear DIC in (4.11) using the lin-
earised model around the equilibrium point, as described in Section 4.2.2.
If this sufficient DIC condition is not satisfied, DIC of the nonlinear
process G is not conclusive based on Theorem 4.8. Otherwise, proceed
to the next step.

4. Check whether Condition 1 of Theorem 4.8 is satisfied by the nonlinear
model (4.24) of the generalized process P : u1 → y (u1 ∈ U1 ⊂ Rm,
y ∈ Y ⊂ Rm), where P is process G in series connection with the
diagonal system N . U1 is the region of u1 corresponding to u ∈ U
and u1e is the steady-state equilibrium point corresponding to u = ue.
An easy and often effective choice of system N is the real diagonal
constant matrix D obtained in Step 3. Solve the steady-state equation
and find a unique function x = h (u1) from the equation 0 = f (x, u1).
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Check whether x = h (u1) ∈ C2 for any u1 ∈ U1. If not, DIC is not
conclusive. Otherwise, proceed to the next step.

5. Redefine the input ∆u as u1−u1e and output ∆y as y−ye such that the
steady-state input output function ∆y = g(h(∆u), ∆u) is unbiased in
the sense that 0 = g (h(0), 0). Then, check Condition 3 of Theorem 4.8
for positiveness of the inner product ∆yT∆u = ∆uT g (h(∆u), ∆u) nu-
merically in the region of interest. The condition (to ensure LES) of
∆uT g(h(∆u), ∆u) ≥ ρ|∆u|2 (for some scalar ρ > 0) for ∆u in a neigh-
bourhood of ∆u = 0 is guaranteed by the use of D as system N . If the
inner product ∆yT ∆u satisfies Condition 3 in the region of interest,
then process G is DIC.

4.3.4 Nonlinear DIC Analysis for a Dual Tank System

We illustrate how to use the above DIC analysis procedure, using a dual
tank level control problem. This example is taken from [119]. As shown in
Figure 4.2, water flows into two tanks and is controlled by Pump 1 and Pump
2 to produce flow rates f1 and f2. The outlet flow rates of the two tanks are
denoted fo1 and fo2, respectively. The liquid levels in tank 1 and tank 2 are
h1 and h2. Assume that h1 > h2 and the flow rate from tank 1 to tank 2 is
f12.

The liquid levels in tanks 1 and 2 can be described by the following equa-
tions:

dh1

dt
=

1
A

(−f12 − fo1 + f1) =
1
A

(−k2

√
h1 − h2 − k1

√
h1 + f1),

dh2

dt
=

1
A

(f12 − fo2 + f2) =
1
A

(k2

√
h1 − h2 − k1

√
h2 + f2),

(4.29)

where A = 1 m2, k1 = 0.26 m− 1
2 /min and k2 = 0.13 m− 1

2 /min. If we select
the flow rates f1 and f2 as control inputs and the heights of the liquid level

Pump 1
f1 f2

Pump 2

h1

h2

fo1 f12 fo2

Fig. 4.2. Schematic diagram of a dual tank level control process
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h1 and h2 as control outputs, then the process model in (4.29) can be written
as

ẋ1 =
1
A

(−k2

√
x1 − x2 − k1

√
x1 + u1),

ẋ2 =
1
A

(k2

√
x1 − x2 − k1

√
x2 + u2),

y1 = x1,

y2 = x2.

(4.30)

The process model in (4.30) is found to be LES from its linearised model
around the equilibrium. This model is also GAS in the region of interest
(details can be found in [119]):

h1 > 0, h2 > 0 and h1 − h2 > 0. (4.31)

The DIC property of this process around an equilibrium point

xe = [h1e, h2e]T = [8.8, 5.8]T m, (4.32)

is analysed. It can be verified that (4.11) is satisfied with D = I. Therefore,
the linearised system is DIC. The conditions in Theorem 4.8 for the nonlinear
model in (4.30) are analysed with D = I.

By redefining the state, input and output variables as

x̃ = x− xe = [x1 − 8.8, x2 − 5.8]T m,

∆u = u1 − ue = [u11 − 1, u12 − 0.4]T m3/min,

∆y = y − ye = [y1 − 8.8, y2 − 5.8]T m3/min,

(4.33)

the steady-state input output mapping can be found as follows:

∆y1 =(25
√

5(1 + ∆u1)2 + 2(1 + ∆u1)(2/5 + ∆u2) − 3(2/5 + ∆u2)2

− 135 − 125∆u1 − 25∆u2)2/676− 8.8,

∆y2 =(25
√

5(1 + ∆u1)2 + 2(1 + ∆u1)(2/5 + ∆u2) − 3(2/5 + ∆u2)2

+ 5 − 25∆u1 + 75∆u2)2/676 − 5.8.

(4.34)

Condition 3 in Theorem 4.8 is reduced to ∆yT∆u > 0, which can be
verified numerically using discrete points in the region of interest. A three-
dimensional plot is given in Figure 4.3, from which it can be seen that the
DIC conditions in Theorem 4.8 are satisfied in the following region:

∆u1 ∈ [−0.4, 0.4] m3/min (f1 ∈ [0.6, 1.4] m3/min),

∆u2 ∈ [−0.2, 0.2] m3/min (f2 ∈ [0.2, 0.6] m3/min).
(4.35)

Therefore, this nonlinear process is DIC in the above input space.
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Fig. 4.3. Values of ∆yT ∆u [119]

4.4 Block Decentralized Integral Controllability

When process interactions are severe, the plantwide process may not be effec-
tively controlled by fully decentralized (multiloop) controllers. In this case, a
multivariable controller is often implemented for each subsystem, which can
be either a part of a process unit or a subsystem of the plantwide process
containing several process units. The entire control system will have a block
diagonal structure. Design and implementation of such a control system is
often simpler and more fault-tolerant than the full multivariable controller for
the entire plantwide process [77]. Similar to the multiloop design, it is prefer-
able that the block diagonal controller has integral action to achieve offset-free
control (block integral controllability), and any one or more controller blocks
can be arbitrarily detuned without endangering closed-loop stability (block
detunability). We can extend the concept of DIC and define processes that
can be controlled by the above block diagonal control systems to be block
decentralized integral controllable (BDIC). This section is based mainly on
[151].

Consider a feedback system under block decentralized control, as shown
in Figure 4.4. The m×m process transfer function G(s) is partitioned in the
following block form:

G(s) = [Gij(s)]i,j=1,...,k , (4.36)

where each block Gij(s) is an mi ×mj transfer function submatrix. Define
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Block diagonal controller C(s)
Process in block form G(s)

G11 (s) · · · G1k (s)
G21 (s) · · · G2k (s)

...
. . .

...
Gk1 (s) · · · Gkk (s)

K1 (s) · · · 0
0 · · · 0
...

. . .
...

0 · · · Kk (s)−

+ 1
sI

Fig. 4.4. Feedback system under block diagonal control

Gb(s) = diag [Gii(s)]i=1,...,k . (4.37)

Under block decentralized control, the diagonal blocks Gii(s) are controlled
by multivariable subcontrollers that form the overall controller C(s) with the
following block diagonal structure:

C(s) = diag [Ci(s)]i=1,...,k , (4.38)

where Ci (s) is an mi × mi multivariable controller for the ith block Gii(s).
The property of BDIC can be defined as follows:

Definition 4.10 (Block decentralized integral controllability [151]).
For a given multivariable stable process system with a transfer function G(s) ∈
Cm×m in the block partition form of (4.36), if there exists a corresponding
block diagonal controller in the form of (4.38) with integral action, i.e.,

C(s) = diag [Ci(s)]i=1,...,k =
1
s

diag [Ki(s)]i=1,...k , (4.39)

such that the feedback system is stable and such that each individual con-
troller block Ci(s) (i = 1, . . . , k) may be detuned independently by a factor
ξi, (0 ≤ ξi ≤ 1, ∀ i = 1, . . . , k), without introducing instability, this process is
said to be block decentralized integral controllable (BDIC) with respect to the
prespecified controller structure.

The block decentralized integral controllability represents some preferable
features of a process with respect to the prespecified controller structure:
(1) integral action can be used in each subcontrol system to achieve offset-free
control; (2) each controller block can be detuned or switched off independently
without endangering the closed-loop stability.

A concept relevant to BDIC is decentralized closed-loop integrity (DCLI),
which is defined as follows:
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Definition 4.11 (Decentralized closed-loop integrity [31]). A multi-
variable stable process G(s) is said to possess decentralized closed-loop integrity
(DCLI) if it can be stabilized by a stable block diagonal controller C(s) which
contains integral action and if it remains stable after failure occurs in one or
more control blocks.

DCLI addresses the issue of closed-loop system stability under control
subsystem failures, i.e., the process can be stabilized by a controller Ĉ (s) =
ΞC (s), where

Ξ = diag {ξ1, . . . , ξi, . . . , ξk} , ξi ∈ {0, 1} , ∀ i = 1, . . . , k, (4.40)

which is a special case of BDIC. For BDIC processes, the closed-loop stability
remains when controller blocks are arbitrarily detuned. Therefore, a BDIC
process must also be DCLI.

4.4.1 Conditions for BDIC

Sufficient condition based on the Passivity Theorem

Since the Passivity Theorem is applicable to both decentralized and multi-
variable systems, the passivity-based DIC condition given in Theorem 4.4 can
be extended to BDIC as follows:

Theorem 4.12 (Sufficient condition for BDIC[151]). A multivariable
stable process with a transfer function G(s) ∈ C

m×m is block decentralized in-
tegral controllable with respect to the prespecified controller structure in (4.38)
if a nonsingular real block diagonal matrix,

W = diag{W1, . . . ,Wi, . . . ,Wk} ∈ R
m×m, (4.41)

where Wi ∈ R
mi×mi , can be found such that

G(0)W + WTGT (0) ≥ 0. (4.42)

Proof. Any nonsingular square block diagonal matrix W given above can be
factorized into two nonsingular, square matrices M and N with the same
block diagonal structure of W , i.e.,

W = MN−1, (4.43)

where M = diag{Mi}, N = diag{Ni}, i = 1, . . . , k, M, N ∈ Rm×m and Mi,
Ni ∈ R

mi×mi . Thus (4.42) can be written as

G(0)MN−1 + N−TMTGT (0) ≥ 0, (4.44)

which is equivalent to



106 4 Passivity-based Decentralized Control
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Virtual process G′(s)
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Gcd(s)

NTG(s)M

Fig. 4.5. BDIC analysis

NT
[
G(0)MN−1 + N−TMTGT (0)

]
N ≥ 0, (4.45)

i.e.,
NTG(0)M + MTGT (0)N ≥ 0. (4.46)

As shown in Figure 4.5, define a virtual process G′(s) = NTG(s)M . It is easy
to see that G′(0) is nonsingular. Inequality 4.46 indicates that G′(0) satisfies
the following inequality:

G′(0)Im + ImG′T (0) ≥ 0, (4.47)

where Im is an m×m identity matrix. From Theorem 4.4, the virtual process
G′(s) is DIC. As a result, there exists a multiloop controller,

Cd(s) =
1
s

diag {Kd1(s), . . . ,Kdj(s), . . . ,Kdm(s)} , (4.48)

which stabilizes G′(s) and maintains closed-loop stability when each diago-
nal subcontroller is independently detuned by an arbitrary factor of ξdj ∈
[0, 1] , ∀ j = 1, . . . ,m. By choosing the detuning factors (ξi for the ith con-
troller block, i = 1, . . . , k), it can be seen that process G′(s) is also stabilized
by

Ĉd (s) = ΞCd (s) , (4.49)

where

Ξ = diag {ξ1I1, . . . , ξiIi, . . . , ξkIk} , Ii ∈ Rmi×mi , ξi ∈ [0, 1] , ∀ i = 1, . . . , k.
(4.50)

Therefore, the real controller “seen” by the original process G(s) is

C(s) = MCd(s)NT =
1
s

diag{K1(s), . . . ,Ki(s), . . . ,Kk(s)}, (4.51)



4.4 Block Decentralized Integral Controllability 107

which can be detuned to

Ĉ(s) = ΞC(s) =
1
s

diag{ξ1K1(s), . . . , ξiKi(s), . . . , ξkKk(s)}, (4.52)

without causing closed-loop instability. Therefore, process G (s) is BDIC.

For a given process G(s), (4.42) becomes an LMI in the decision variable
matrix W with a certain block diagonal structure that can be written in a form
similar to (4.12). This LMI problem can be solved by using the MATLAB�

Robust Control Toolbox.

Necessary conditions

Obviously, the following necessary conditions for DCLI are also necessary
conditions for BDIC:

Theorem 4.13 (Necessary conditions for DCLI [31]). Given a stable
multivariable process with a transfer function G(s), which can be partitioned
into k × k block subsystems, G(s) possesses decentralized closed-loop integrity
only if

1. The following block relative gain (BRG) condition is satisfied:

det [Λi (G (0))] > 0, ∀ i = 1, . . . , k, (4.53)

where Λi (G(0)) is the BRG of Gii(s) [81].
2. The Niederlinski Index (NI) [88] is positive, i.e.,

NI [G(0)] =
det [G (0)]
det [Gb (0)]

> 0. (4.54)

4.4.2 Pairing Based on BDIC

BDIC is a less restrictive condition than DIC, but a more restrictive condition
than DCLI. The necessary conditions in Theorem 4.13 can be used to screen
out unworkable pairings before examining the sufficient conditions given in
Theorem 4.12.

For a given process, it is possible to have multiple pairing schemes all of
which satisfy the BDIC conditions. Under this circumstance, the best pairing
scheme should be determined in conjunction with other pairing criteria. One
of the major considerations is resilience, which is the quality of regulatory
and servo behaviors that can be obtained by feedback control [86]. This can
be quantified by using the minimum singular values (at steady state or over a
frequency band) of each subsystem of Gb (s). The larger the minimum singular
values, the more resilient the subsystems are, because larger disturbances
can be handled by the controller for given constraints on the manipulated
variables.
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4.4.3 BDIC Analysis of the SFE Process

In this section, we apply the BDIC conditions presented in Section 4.4.1 to
analyse the control schemes for a supercritical fluid extraction (SFE) process
[152]. As depicted in Figure 4.6, the SFE process consists of three physical
units: extractor, stripper + reboiler and trim-cooler. Due to the high coupling
between the controlled variables and varying response times in different units,
the SFE process has been difficult to control.

In this process, the manipulated variables are

u1 = solvent flow rate (extractor),
u2 = reflux flow rate (stripper),
u3 = boilup rate (stripper), and
u4 = shell-tube temperature (trim-cooler).

The controlled variables are

y1 = raffinate composition (extractor),
y2 = overhead composition (stripper),
y3 = bottoms composition (stripper), and
y4 = solvent temperature (trim-cooler).

Stripping
column

Feed

Flash

Compressor

Make-up
CO2

Flash

Reboiler

Flashing to lower 
pressure

C
Trim cooler

T
Raffinate

C

CExtract

Extractor

Condenser

Fig. 4.6. Supercritical fluid extraction process
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Here the following linearised model of the SFE process derived by Samyu-
dia et al. around a steady-state operating condition is used for the BDIC
analysis (details of the model and the nominal steady-state operating condi-
tion can be found in [104]):

ẋ = Ax + Bu,

y = Cx,
(4.55)

where u = [u1, u2, u3, u4]
T , y = [y1, y2, y3, y4]

T and

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−27.1 8.27 −0.945 −0.32 −55.11 0 0 0 0 0.0003
15.1 −23.4 9.17 −0.945 0 0 0 0 0 0.0001
0 15.1 −23.4 8.23 0 0 0 0 0 0.0003
0 0 15.1 −27.1 0 0 0 0 0 0.0003
0 0 0 0 −136.1 136.5 0 0 0 0
0 0 0 −60.5 −29.11 −141.4 0.264 0 0 0.0030
0 0 0 0 −0.0105 4.96 −5.217 0.264 0 0
0 0 0 0 −0.0009 −0.0035 1.65 −1.66 0 0
0 0 0 0 0 0 0 0 −41.4 0
0 0 0 0 6.33 0 0 0 0.141 −13.4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0016 6.4569 −6.4568 0
−0.0036 0 0 0
−0.0066 0 0 0
−0.0083 0 0 0
−0.0577 1.1663 0.5669 0
−0.0023 0.0656 −0.0181 0

0 0.0059 −0.0958 0
0 0.0359 −0.5981 0
0 0 −15.6185 0

0.0005 −0.7417 0.7416 13.1095

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C =

⎡⎢⎣ 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1

⎤⎥⎦ .

Using the proposed BDIC conditions, different control strategies for the
SFE process are analysed. As shown in Table 4.1, the control modes of DAU1,
DAU2, DAU3, DAU5 and DAU6 are BDIC and thus they are promising con-
trol schemes. In contrast, Modes SA, ESA and DAU4 are not BDIC and
therefore not preferred. This conclusion is consistent with that drawn by other
researchers [104] based on fairly complicated performance analysis involving
dynamic simulation.

It is interesting to see that modes SA and ESA, which represent the control
structures corresponding to plant physical decomposition, are not suitable.
This is due to the strong coupling between the extractor and stripper units,
as confirmed by Samyudia et al. [104]. From this example, it can be seen that
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Table 4.1. BDIC-based analysis for the SFE process

Mode Control Structure
(4.42)
holds?

(4.53)
holds?

(4.54)
holds?

BDIC
?

SA
1. Extractor
2. Stripper+reboiler
3. Trim-cooler

No No No No

ESA
1. Extractor+trim-cooler
2. Stripper+reboiler

No No No No

DAU1
1. Extractor+stripper+reboiler
2. Trim-cooler

Yes Yes Yes Yes

DAU2
1. Extractor+reboiler
2. Stripper+trim-cooler

Yes Yes Yes Yes

DAU3
1. Extractor+stripper+trim-cooler
2. Reboiler

Yes Yes Yes Yes

DAU4
1. Extractor
2. Stripper+reboiler+trim-cooler

No No No No

DAU5
1. Extractor+stripper
2. Reboiler+trim-cooler

Yes Yes Yes Yes

DAU6
1. Extractor+stripper
2. Reboiler
3. Trim-cooler

Yes Yes Yes Yes

intuitive block diagonal control schemes based on plant physical decomposi-
tion should not always be used because they may lead to control systems with
poor achievable performance.

4.5 Dynamic Interaction Measure

4.5.1 Representing Dynamic Interactions

In the previous sections, we studied several steady-state interaction measures.
They are relatively simple to use but do not indicate the impact of interactions
on dynamic control performance under decentralized control. One of the ways
to investigate dynamic performance is to represent the interactions as process
uncertainty and study their impact on closed-loop system performance and
stability using the robust control framework [87].

For a system described by a full model G(s) with a diagonal submodel
Gd(s) = diag {Gii}, the ith output yi can be expressed as follows:

yi(s) = gii(s)ui(s) +
m∑

j=1,j �=i

gij(s)uj(s). (4.56)

The first item of the above equation is the diagonal subsystem and the second
item denotes the interaction between the ith channel and all other channels.
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Because the ith decentralized controller ci(s) is designed only based on the
model gii(s), the second term can be considered the perturbation. Thus, the
diagonal system model is used as the nominal model and the interaction is
represented as uncertainty. Therefore, the analysis of interactions and the
closed-loop stability under decentralized control can be conducted system-
atically using robust control theory. This approach was first developed by
Grosdider and Morari [47]. The interaction can be modelled as either additive
or multiplicative uncertainty. Figure 4.7 illustrates how to characterize the
interaction as additive uncertainty:

∆A = G (s) −Gd (s) . (4.57)

Then the system “seen” by the off-diagonal system is

MA (s) = C (s) [I + Gd (s)C (s)]−1
. (4.58)

Note that both the controller C (s) and Gd (s) are diagonal; therefore, system
M (s) is also diagonal:

MA (s) = diag {mA,1 (s) , · · · ,mA,i (s) , · · · ,mA,m (s)} , (4.59)

where
mA,i (s) =

ci (s)
1 + gii (s) ci (s)

, i = 1, . . . ,m.

From the Small Gain Theorem, the closed-loop system is stable if MA(s) and
∆A(s) are stable and

σ̄ (MA (jω)) < σ̄−1 (∆A(jω)) , ∀ ω ∈ R. (4.60)

This analysis of the interaction could be conservative due to its treatment of
actually known off-diagonal systems as uncertainty. However, this approach
is useful due to the following advantages:

1. The interaction measure is much simpler and the stability condition is
easier to apply than other approaches.

2. The “true” model uncertainties can be dealt with within the same frame-
work. Thus, decentralized controllers can be made robust.

The conservativeness of this approach can be reduced by taking the diag-
onal structure of the closed-loop system MA (s) into account. The diagonally
structured singular value (µ) can be used as the interaction measure instead of
the maximum singular values. Inequality 4.60 can be replaced by the following
inequality [47]:

σ̄ (MA (jω))µ (∆A(jω)) < 1, ∀ ω ∈ R, (4.61)

which is less conservative because it exploits the diagonal structure of MA(s).
Interactions can also be modelled as multiplicative uncertainty:
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Fig. 4.7. Representing interaction as additive uncertainty

∆M = [G (s) −Gd (s)]G−1
d (s) , (4.62)

with
MM (s) = Gd (s)C (s) [I + Gd (s)C (s)]−1 . (4.63)

In this case, the closed-loop system is stable if MM (s) and ∆M (s) are stable
and

σ̄ (MM (jω))µ (∆M (jω)) < 1, ∀ ω ∈ R. (4.64)

The values µ (∆A(jω)) and µ (∆M (jω)) are called structured singular
value-based interaction measures (SSV-IM). Unfortunately, none of the above
stability conditions use the phase information of the off-diagonal system and
thus they can still be very conservative. In the next subsection, we adopt a
passivity-based interaction measure. The basic idea is to characterize the off-
diagonal system in terms of the passivity index developed in Chapter 3 to
exploit both phase and gain information and derive the stability conditions
for decentralized control based on the passivity and sector stability theorem.

4.5.2 Passivity-based Interaction Measure

In the development of the passivity-based interaction measure, we adopt the
robust control framework similar to [47] but use the frequency-dependent IFP
index (ν−) which was introduced in Definition 3.1 to characterize the inter-
action. The interactions are modelled as uncertainty ∆, in the form of either
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Fig. 4.8. Passivity-based interaction measure

∆A (s) or ∆M (s) given in (4.57) and (4.62), respectively. Denote the closed-
loop system of Gd (s) and the decentralized controller C (s) as system M
(MA (s) or MM (s) for additive uncertainty and multiplicative uncertainty,
respectively). The closed-loop system of the actual process G (s) and the con-
troller can be represented in Figure 4.8a.

Interaction measures

The interactions can be quantified by their IFP index ν− (∆ (s) , ω). To pro-
vide a “tighter” interaction measure, the input-output diagonal scaling similar
to that used to calculate structured singular values (as in [101]) can be imple-
mented to take into account the diagonal structure. Define D as a diagonal
and nonsingular matrix. The original ∆− M system shown in Figure 4.8a is
stable if and only if the feedback system with the scaling matrix D shown in
Figure 4.8b is stable. Because system M (s) is diagonal, M = D−1M (s)D.
However, the passivity index of D−1∆(s)D can be significantly reduced by
choosing an appropriate D matrix. Because the passivity index ν− is defined
as frequency-dependent, frequency-dependent diagonal scaling matrices D(ω)
can be found to minimize the passivity indices at different frequencies (similar
to [16]). To facilitate the stability analysis, we define

∆̃(s) = ∆(s)V, (4.65)

where V is the diagonal sign matrix whose elements are determined such that
the diagonal elements of ∆̃(s) are positive at steady state. For a given stable
system ∆ (s) ∈ C

m×m, the problem of diagonal scaling of the passivity index
at frequency ω can be described as follows:

Problem 4.14.
min
D(ω)

{t} (4.66)

subject to
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D(ω)−1∆̃(jω)D(ω) + D(ω)∆̃∗(jω)D(ω)−1 + tI > 0, (4.67)

where D(ω) ∈ R
m×m

is a nonsingular diagonal matrix and t is a real scalar
variable.

Problem 4.14 cannot be solved directly by an SDP solver because (4.67)
is nonlinear and complex. This problem can be converted into a real LMI
problem as shown below [16]. Since D(ω) is nonsingular, (4.67) is equivalent
to the following inequality:

D(ω)
[
D(ω)−1∆̃(jω)D(ω) + D(ω)∆̃∗(jω)D(ω)−1

]
D(ω)

+ tD(ω)D(ω) > 0. (4.68)

Define
H(ω) = D(ω)D(ω) > 0. (4.69)

Then,
∆̃(jω)H + H∆̃∗ (jω) + tH > 0. (4.70)

Assume that ∆̃(jω) = X(ω) + jY (ω), where both X(ω) and Y (ω) are real
matrices. This leads to

− [X(ω)H + HXT (ω)
]− j

[
Y (ω)H −HY T (ω)

]− tH < 0. (4.71)

The above inequality holds if and only if[−X(ω)H −HXT (ω) Y (ω)H −HY T (ω)
−Y (ω)H + HY T (ω) −X(ω)H −HTX(ω)

]
− t

[
H 0
0 H

]
< 0. (4.72)

Therefore, Problem 4.14 can be converted into the following generalized eigen-
value problem with constraints described in real matrix inequalities.

Problem 4.15.
min
H(ω)

{t} (4.73)

subject to (4.72) and (4.69).

For each frequency ω, a real matrix of H(ω) can be obtained by solving
the above optimization problem using an SDP solver. The passivity-based
interaction measure can then be defined as

Definition 4.16 (Passivity-based interaction measure (PB-IM)). Con-
sider an LTI system with a transfer function G (s). The diagonal elements of
G (s) form a diagonal subsystem Gd (s). Denote ∆ (s) as the representation of
the interaction, in either of the following two forms: ∆A(s) = G (s) − Gd (s)
and ∆M (s) = [G (s) −Gd (s)]G−1

d (s). If ∆ (s) is stable, the passivity-based
interaction measure (PB-IM) at frequency ω is defined as

νI (G (s) , ω) � min
D

{
max

[
−1

2
λ
(
D−1∆̃ (jω)D + D∆̃∗ (jω)D−1

)
, 0
]}

,

(4.74)
where ∆̃ (jω) is defined by (4.57), (4.62) and (4.65).
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Matrix D is a frequency-dependent decision variable that can be obtained
by solving Problem 4.15. In the rest of the book, we denote νIA (G (s) , ω) and
νIM (G (s) , ω) as the interaction measures based on additive and multiplica-
tive uncertainty models (i.e., ∆A(s) and ∆M (s)), respectively.

The above passivity-based interaction measure has the same properties
as the frequency-dependent IFP index given in Property 3.3. The following
decentralized stability condition can be obtained immediately from Proposi-
tion 3.4:

Theorem 4.17. Consider an LTI process system with a transfer function
G(s) and a stable and minimum phase transfer function W (s).

1. Assume that νIA(G(s), ω) ≤ νF (W (s), ω). The process can be stabilized
by a decentralized controller C (s) if MA(s)′ = MA(s)[I −W (s)MA(s)]−1

is strictly positive real (i.e., stable and strictly input feedforward passive),
where

MA (s) = C (s) [I + Gd (s)C (s)]−1
. (4.75)

2. Assume that νIM (G(s), ω) ≤ νF (W (s), ω). The process can be stabilized
by a decentralized controller C (s) if MM (s)′ = MM (s)[I−W (s)MM (s)]−1

is strictly positive real, where

MM (s) = Gd (s)C (s) [I + Gd (s)C (s)]−1
. (4.76)

Similarly, the sector-bounded passivity index (simultaneous IFP and OFP)
given in Definition 3.8 can also be used as an interaction measure:

Definition 4.18 (Sector-based interaction measure (SB-IM)). Con-
sider an LTI system with a transfer function G (s). The diagonal elements
of G (s) form a diagonal subsystem Gd (s). If ∆A (s) and ∆M (s) are stable,
the sector-based interaction measure (SB-IM) at frequency ω is defined as

νsIA (G (s) , ω, b) � max (νS− (∆A(s), ω, b) , 0) , (4.77)

νsIM (G (s) , ω, b) � max (νS− (∆M (s), ω, b) , 0) . (4.78)

Similar to the PB-IM, the interaction can be scaled during the computation
of the SB-IM. However, direct scaling could be fairly difficult. Because the
values of PB-IM and SB-IM are close to each other when b is large, it is often
sufficient to use the same scaling matrices optimized for the PB-IM. The SB-
IM can be calculated from the PB-IM using Theorem 3.9. The definition of
SB-IM immediately leads to the decentralized stability condition based on
Theorem 3.11:

Theorem 4.19. Consider an LTI process system with a transfer function
G(s) and a stable and minimum phase transfer function W (s).
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1. Assume that νsIA(G(s), ω, b) ≤ −νS− (W (s), ω, bw). The process can be
stabilized by a decentralized controller C (s) if

M ′
A(s) = MA(s) [I −W (s)MA(s)]−1 +

1
b + bw

I (4.79)

is strictly positive real (or extended strictly positive real), where MA (s) is
given in (4.75).

2. Assume that νsIM (G(s), ω, b) ≤ −νS− (W (s), ω, bw). The process can be
stabilized by a decentralized controller C (s) if

M ′
M (s) = MM (s) [I −W (s)MM (s)]−1 +

1
b + bw

I (4.80)

is strictly positive real (or extended strictly positive real), where MM (s)
is given in (4.76).

Conceptually, the PB-IM is a “cleaner” interaction measure based on IFP.
The SB-IM is theoretically less conservative and can be useful if the robust
control design approach given in Section 3.3.4 is employed in decentralized
control design.

Achievable decentralized control performance

Like the passivity-based uncertainty measure, the passivity-based interaction
measure also implies the performance achievable by a decentralized control.
For example, if νIM (G(s), ω) is known, Theorem 4.17 implies that

σ̄ (MM (jω)) <
1

νIM (G(s), ω)
, ∀ ω. (4.81)

Denote

MM (s) = diag {mM,1 (s) , · · · ,mM,i (s) , · · · ,mM,m (s)} , (4.82)

where

mM,i (s) =
gii (s) ci (s)

1 + gii (s) ci (s)
, ∀ i = 1, . . . ,m. (4.83)

Therefore,

|mM,i (jω)| < 1
νIM (G(s), ω)

, ∀ ω, i = 1, . . . ,m. (4.84)

As a result, it is possible to make the sensitivity function of each loop
|Si (jω)| = |1 −mM,i (jω)| (i = 1, . . . ,m) arbitrarily small at frequencies
when νIM (G(s), ω) < 1 but

|Si (jω)| ≥
∣∣∣∣1 − 1

νIM (G(s), ω)

∣∣∣∣ , (4.85)
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when νIM (G(s), ω) > 1. The above result is comparable to the small gain-
based decentralized control condition given in (4.61) and (4.64). For example,
if multiplicative uncertainty is used,

σ̄ (MM (jω)) < µ−1 (∆M (jω)) , ∀ ω, (4.86)

which implies that the smallest sensitivity function of each loop is bounded
by

|Si (jω)| ≥ ∣∣1 − µ−1 (∆M (jω))
∣∣ , ∀ ω, i = 1, . . . ,m, (4.87)

when µ (∆M (jω)) > 1.
One special performance consideration is offset-free control. To achieve

zero steady-state error of the closed-loop system using a decentralized con-
troller, it is essential to implement an integrator in each of the single-loop
controllers. Clearly, if the process G (s) is stable, the sufficient condition for
integral controllability is

νIM (G(s), 0) < 1, (4.88)

or
µ (∆M (0)) < 1. (4.89)

4.5.3 Examples

In this subsection, we illustrate the proposed passivity-based interaction mea-
sures (PB-IM and SB-IM) and compare them to the small gain-based inter-
action measure.

High-purity distillation column

Consider a binary high-purity distillation column. As shown in Figure 4.9,
the flow rates of distillate (D) and boilup (V ) are manipulated to control
the top and bottom composition yD and xB. The linear model of the D–V
configuration of the distillation column is given as [87][

yD (s)
xB (s)

]
= G (s)

[
D (s)
V (s)

]
, (4.90)

where

G (s) =
1

1 + 75s

[−0.878 1−0.2s
1+0.2s 0.014

−1.082 1−0.2s
1+0.2s −0.014 1−0.2s

1+0.2s

]
.

Here we model the interactions as multiplicative uncertainty. Since there are
RHP zeros in the diagonal elements of G (s), ∆M (s) will have unstable poles.
As suggested in [87], the simplest way to get around this problem is to neglect
the RHP zeros in the diagonal model used in decentralized control and treat
the RHP zeros as uncertainty. Therefore,
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Fig. 4.9. High-purity distillation column
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Gd (s) =
1

1 + 75s

[−0.878 0
0 −0.014

]
. (4.91)

This is actually not very conservative because the RHP zeros limit the achiev-
able performance anyway. The PB-IM and SSV-IM are shown in Figure 4.10.
The value of SB-IM depends on the upper sector bound b. For b = 1000,
νsIM (G (s) , ω, b) ≈ νIM (G (s) , ω). The PB-IM is significantly smaller than
the SSV-IM. Particularly, at steady state, νIM (G (s) , 0) = 2 × 10−5, but
µ (∆M (0)) = 1.1. According to (4.88) and (4.89), a decentralized controller
that satisfies the passivity-based condition given in Theorem 4.17 can be found
to achieve offset-free control, but no controller with integral action satisfies
the SSV-IM based condition.

Boiler furnace

The system under consideration is a furnace operating with four burners and
four heating coils, as shown in Figure 4.11. Each set of burners is directed at
one of the sets of heating coils, but heat naturally spills over to adjacent coils.
The coil temperatures T1, T2, T3 and T4 are controlled by manipulating the
gas flow rates F1, F2, F3 and F4 of the burners, respectively.

The transfer function of the plant is given as follows [99]:⎡⎢⎢⎣
T1(s)
T2(s)
T3(s)
T4(s)

⎤⎥⎥⎦ = G(s)

⎡⎢⎢⎣
F1(s)
F2(s)
F3(s)
F4(s)

⎤⎥⎥⎦ , (4.92)

where

1 2 3 4

1 2 3 4

Fig. 4.11. Boiler furnace
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Fig. 4.12. Interaction measures of boiler furnace

G (s) =

⎡⎢⎢⎣
1.0

1+4s
0.7

1+5s
0.3

1+5s
0.2

1+5s
0.6

1+5s
1.0

1+4s
0.4

1+5s
0.35
1+5s

0.35
1+5s

0.4
1+5s

1.0
1+4s

0.6
1+5s

0.2
1+5s

0.3
1+5s

0.7
1+5s

1.0
1+4s

⎤⎥⎥⎦ .

Here the pairing of 1-1/2-2/3-3/4-4 is chosen. Obviously, there are large inter-
actions between different control channels. However, due to the symmetrical
structure of G(s), any PI decentralized controllers with positive parameters
can stabilize the plant [75]. The PB-IM and SSV-IM are shown in Figure 4.12,
from which it is clear that the PB-IM is much less conservative than the SSV-
IM. At steady state, the SSV-IM is 1.28, indicating that the interaction is too
large to use any decentralized controller with an integrator. The PB-IM at
steady state is 0.68, showing that the condition specified in (4.88) is satisfied.

In the next section, we show the decentralized control design for the boiler
furnace example. A controller for the high-purity distillation column can be
obtained by following the same steps.

4.6 Decentralized Control Based on Passivity

4.6.1 Problem Formulation

Decentralized control design can be based on the interaction measures de-
scribed in the previous section. Because the interactions are modelled as un-
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certainties, the decentralized control problem can be solved in the framework
of robust control. The decentralized control synthesis problem can be de-
scribed as follows:

Problem 4.20. Given a multivariable LTI process with a transfer function
G (s) ∈ Cm×m, design a decentralized controller C(s) = diag {ci(s)} (i =
1, . . . ,m), such that

1. The closed-loop system consisting of G(s) and C(s) is stable. This can
be achieved by designing a controller C (s) that satisfies the decentralized
stability conditions in Theorem 4.17 or Theorem 4.19.

2. The following control performance is achieved:

‖WSCS‖∞ ≤ 1, (4.93)

where WSC(s) is a user-specified weighting function.

The decentralized design for the closed-loop system performance given in
(4.93) can be very hard. One alternative approach is to design each control
loop to meet the following specification:

‖WSSd‖∞ ≤ 1, (4.94)

where Sd(s) = [I + Gd(s)C(s)]−1 and

WS(s) = diag {wS1(s), . . . , wSi(s), . . . , wSm(s)} , (4.95)

i.e., ∥∥∥wSi [1 + giici]
−1
∥∥∥
∞

≤ 1, for i = 1, · · · ,m, (4.96)

and then check whether (4.93) is satisfied. If this condition is not satisfied,
WS(s) is adjusted and control loops are redesigned until the required closed-
loop performance is obtained.

Now the decentralized control problem becomes exactly the robust control
design for each loop, subject to the passivity conditions given in Theorems 4.17
and 4.19. If SB-IM is used to characterize the interactions, the PBRC synthesis
approaches presented in Section 3.3 can be directly used to design individual
control loops.

Alternatively, based on PB-IM, the frequency range in which ∆M (s) is
“near-passive” can be obtained. The interactions at higher frequencies can be
quantified by σ̄ (∆M (jω)). Then, the control design presented in Section 3.4
can be implemented to find individual controller loops.

4.6.2 Decentralized Control of Boiler Furnace

Here we design a decentralized control system for the boiler furnace described
in Section 4.5.3. This control design example was first published in [11]. A
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decentralized controller C (s) = diag {c1 (s) , c2 (s) , c3 (s) , c4 (s)} is to be de-
signed such that it stabilizes the full model and achieves zero steady-state
tracking error with a settling time less than 25 minutes.

The full model is not diagonal dominant with large interactions. The SSV-
IM at steady state is µ [∆M (0)] = 1.28, indicating that it is not possible
to design a decentralized controller to satisfy the small gain-based condition
given in (4.89). The SB-IM νsIM [G (s) , ω, 1000] is almost identical to PB-IM
as shown in Figure 4.12, with νsIM [G (s) , 0, 1000] = 0.68. We use the robust
control synthesis approach described in Section 3.3.4 to design each control
loop.

By curve fitting, the SB-IM is found to be bounded by

νsIM (G(s), ω, 1000) ≤ −νS−

(
s + 3.5

0.01s + 5
, ω, 1000

)
. (4.97)

Therefore, each closed-loop should satisfy the following condition:

mM,i(s)
1 − w2(s)mM,i(s)

+
1

2000
is ESPR, for i = 1, . . . , 4, (4.98)

where mM,i (s) is given in (4.83) and

w2 (s) =
s + 3.5

0.01s + 5
. (4.99)

To satisfy the closed-loop performance specification, the weighting function
for each single loop performance is chosen as

w1(s) =
1
2s

. (4.100)

The weighting function to penalize controller gain is w3 = 10−5. The decen-
tralized controller is then obtained by following Procedure 3.16:

ci(s) =
2.46 × 106s2 + 1.23 × 109s + 3.08 × 108

s3 + 5.61 × 105s2 + 3.41s
, (4.101)

for i = 1 . . . 4.
The sensitivity function of the closed-loop system, consisting of the full

model and the decentralized controller, S(s) = [I + G(s)C(s)]−1, is shown
in Figure 4.13. The responses of T1, T2, T3 and T4 to the step change of F1

are given in Figure 4.14 (the responses to step changes in F2, F3 and F4 are
similar), from which it can be seen that the design specifications are satisfied.

4.7 Summary

In this chapter, we have discussed how the concept of passivity can be used
in decentralized control. It is worth pointing out that passivity-based interac-
tion analysis shows the destabilizing effects of process interactions rather than
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the magnitude of interactions. Both the steady-state (DIC and BDIC) and the
dynamic interaction analysis tools can be used in determining suitable manip-
ulated/controlled variable pairing schemes. By modelling process interactions
as uncertainties, the passivity-based robust control synthesis approaches de-
veloped in Chapter 3 can be used to design decentralized controllers.



5

Passivity-based Fault-tolerant Control

We have seen in Chapter 4 that the concept of passivity can be used to develop
decentralized control approaches. A passivity-based decentralized controller,
if properly designed, can also achieve fault tolerance. For example, for a given
multivariable linear strictly passive process, a decentralized passive controller
can maintain the stability of a closed-loop control system when one or more
controller loops fail simply because the decentralized passive controller re-
mains passive when one or more elements are detuned or taken out of service.
Motivated by this observation, a passivity-based decentralized fault-tolerant
control framework was developed [16, 17, 148, 149]. In this chapter, we will
present the main results of this approach, including fault-tolerant control sys-
tems design with zero or minimum control loop redundancy.

5.1 Introduction

In process control applications, failures of control components such as actua-
tors, sensors or controllers are often encountered. A burned-out thermocouple,
a broken transducer or a stuck valve are typical control fault events. These
problems not only degrade the performance of the control system, but also
may induce instability, which could cause serious safety problems. With the
increasing reliance on automatic control systems, fault-tolerant control (FTC)
becomes an important issue in the process industries. A fault-tolerant control
system often consists of a fault detection and diagnosis (FDD) subsystem and
the so-called fault accommodation subsystem, which is the controller that
achieves stability and/or control performance objective when faults happen
[20].

At present, most existing fault-tolerant control systems are built with re-
dundant controllers (e.g., [140]). Two different approaches are commonly used
in control practice: active and passive redundancies. In the active redundancy
scheme, a backup controller is activated once a fault of the main control loop is
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detected online [111]. This approach has some obvious drawbacks. First, con-
trol loop faults may not be detected swiftly and accurately. Second, the fault
detection system itself could be a possible source of failures. In the passive
redundancy scheme, the FTC problem is formulated as a reliable stabilization
problem [131]. The process is connected to both the main controller and the
backup controller and can be stabilized by using either or both controller(s).
Therefore, system stability is guaranteed in the presence of control loop fail-
ures without requiring fault detection and subsequent controller switching.
Both above approaches require a significant number of redundant control
components, which sometimes may lead to an unacceptable level of capital
and maintenance costs.

Redundancy-free fault-tolerant control has been studied recently. One ap-
proach is to detect and diagnose system faults online and update control
laws accordingly to stabilize the faulty system [154]. For example, when sen-
sor/actuator failure occurs, the controller parameters are adjusted or even
different controllers, which are designed based on usable sensors and actua-
tors, are employed (e.g., [83, 142]). However, this method could be very com-
plicated to implement because it requires preprogramming multiple control
algorithms for every possible failure scenario. Another approach is to design
fixed decentralized controllers that are inherently fault-tolerant so that no
FDD systems are required.

In this chapter, we focus mainly on the issue of fault accommodation, in-
cluding the analysis for stability under control component failure and design
methods for fault-tolerant controllers. For a stable linear process, it is possible
to design a decentralized controller such that the closed-loop system remains
stable when one or more subloops are partially or fully switched off by sensor
or actuator faults. The stability under this circumstance is called decentral-
ized unconditional stability (DUS) [26] or decentralized detunability [58]. In
later sections, we will present a framework for decentralized unconditional
stabilizing control on the basis of passivity and its extensions. We show how
this framework can be combined with active fault-tolerant control approaches
to deliver reliable and cost-effective solutions.

5.2 Representation of Sensor/Actuator Faults

The faults encountered in process control practice can often be classified as
plant faults, sensor faults and/or actuator faults [20]. This can be illustrated
by the control system depicted in Figure 5.1. The process has m inputs and m
outputs and can be represented by a transfer function G(s) ∈ Cm×m, where
ua ∈ Rm is the actuator output vector and y ∈ Rm is the process output
vector. The outputs from the controller and sensor are u ∈ R

m and ym ∈ R
m,

respectively. Assume that the dynamics of sensors and actuators are negligible.
The plant faults refer to the hardware failure of the plant itself, leading to
changes in process system dynamics (i.e., in G(s)).
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Fig. 5.1. Decentralized feedback control system

In this section, we focus on sensor and actuator faults. Actuator and sensor
faults can be represented by the following models [17]:

ua = Eau + fa,

ym = Emy + fm,
(5.1)

where Ea, Em ∈ Rm×m are actuator and sensor fault matrices with the fol-
lowing diagonal structures:

Ea =

⎡⎢⎢⎢⎣
εa
1 0 · · · 0
0 εa

2 · · · 0
...

...
. . .

...
0 0 · · · εa

m

⎤⎥⎥⎥⎦ , Em =

⎡⎢⎢⎢⎣
εm
1 0 · · · 0
0 εm

2 · · · 0
...

...
. . .

...
0 0 · · · εm

m

⎤⎥⎥⎥⎦ , (5.2)

where 0 ≤ εa
i , ε

m
i ≤ 1 (i = 1, 2, . . . ,m). Vectors fa = [fa

1 , . . . , fa
i , . . . , fa

m]T and
fm = [fm

1 , . . . , fm
i , . . . , fm

m ]T represent the constant components of actuator
and sensor outputs when they fail. This model addresses the following typical
fault scenarios (assuming that the ith channel of the control system fails):

1. Sensor outage: εm
i = 0, fm

i = 0;
2. Controller/actuator outage: εa

i = 0, fa
i = 0;

3. Sensor partially functioning: 0 ≤ εm
i ≤ 1;

4. Actuator partially functioning: 0 ≤ εa
i ≤ 1;

5. Frozen sensor output: εm
i = 0, fm

i =constant output from the ith sensor;
6. Frozen controller output and/or actuator stickiness: εa

i = 0, fa
i =constant

output from the ith controller/actuator.

For the linear feedback system under consideration (as shown in Fig-
ure 5.2), constant vectors fa and fm do not affect the closed-loop stability.
Consequently, for stability analysis under the control failure scenarios listed
above, only the effects of actuator and sensor fault matrices Ea and Em need
to be considered. Due to their diagonal structures, controller K(s) and fault
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Fig. 5.2. Representation of sensor and actuator failures [17]

matrices Ea and Em are permutable, and thus sensor/actuator failures can be
treated as detuning of the decentralized controller K(s). Therefore, fault toler-
ance can be achieved by a decentralized unconditionally stabilizing controller
K(s), which ensures closed-loop stability when one or more of its outputs are
arbitrarily detuned or switched off.

5.3 Decentralized Unconditional Stability Condition

In this section, we discuss under what condition a control system can achieve
decentralized unconditional stability (DUS) and the implications of this con-
dition. This section is based mainly on the results developed in [149] by the
authors and their collaborator.

5.3.1 Passivity-based DUS Condition

Clearly, if a linear process is strictly passive (i.e., stable and strictly input
passive), any passive decentralized controller can achieve DUS. If the process
is not strictly passive, the controller needs to obey the following additional
conditions:

Theorem 5.1 (Passivity-based DUS condition[149]). For the intercon-
nected system comprised of a stable process G(s) ∈ Cm×m and a decentralized
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Fig. 5.3. DUS analysis [149]

controller K(s) = diag{ki(s)}, (i = 1, . . . ,m), as shown in Figure 5.3, if a
passive transfer function w(s) can be found such that

ν− (w(s), ω) < −ν−
(
G+(s), ω

)
, (5.3)

then the closed-loop system will be decentralized unconditionally stable if for
any loop i (i = 1, . . . ,m)

k′
i(s) = k+

i (s)
[
1 − w(s)k+

i (s)
]−1

is passive, (5.4)

where
V = diag{Vii}, i = 1, . . . ,m (5.5)

is a diagonal matrix with either 1 or −1 along the diagonal. The signs of
elements of V are determined such that the diagonal elements of

G+(s) = G(s)V (5.6)

are positive at steady state. The SISO system k+
i (s) is the ith element of the

diagonal system
K+(s) = V −1K(s) = V K(s). (5.7)

Proof. The stability of the closed-loop system in Figure 5.1 (assume that
Ga = I and Gm = I) is equivalent to that system in Figure 5.3 by loop
shifting, where

G′(s) = G(s)V + w(s)I, (5.8)

K ′(s) = V K(s) [I − w(s)V K(s)]−1
. (5.9)

Since G′(s) is strictly passive, from the Passivity Theorem, the closed-loop
system in Figure 5.3 is stable if K ′(s) is passive (i.e., k′

i(s) is passive for
i = 1, . . . ,m). When loop i (i = 1, . . . ,m) of the multiloop controller ki(s) is
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Fig. 5.4. Diagonal scaling of passivity index [149]

arbitrarily detuned to εiki(s) (0 ≤ εi ≤ 1), the corresponding k′
i(s) (denoted

as k′
i,d(s)) is given by the following equations:

k′
i,d(s) =

Viiεiki(s)
1 − w(s)Viiεiki(s)

, (5.10)

as

ki(s) =
k′

i(s)
Vii (1 + w(s)k′

i(s))
. (5.11)

Then,

k′
i,d(s) =

εik
′
i(s)

1+w(s)k′
i(s)

1 − w(s) εik′
i(s)

1+w(s)k′
i(s)

=
εik

′
i(s)

1 + (1 − εi)w(s)k′
i(s)

. (5.12)

If k′
i(s) is passive for i = 1, . . . ,m, the right-hand side of (5.12) can be inter-

preted as the negative feedback system of two passive subsystems εik
′
i(s) and

1−εi

εi
w(s). This leads to the conclusion that k′

i,d(s) is passive for all εi ∈ [0, 1].
Therefore, decentralized unconditional stability of the closed-loop system can
be achieved.

5.3.2 Diagonal Scaling

Because the controller K (s) is decentralized, the DUS condition given in
Theorem 5.1 can be made less conservative by diagonally scaling the passivity
index of the process. This is very similar to the diagonal scaling treatment
used in the passivity-based interaction measure described in Section 4.5.2.
The only difference is that here we scale the process model rather than the
uncertainty system.

Assume that D is a diagonal and nonsingular matrix. The closed-loop
system in Figure 5.1 (with perfect sensors and actuators) is stable if and only if
the system in Figure 5.4 is stable (where G+(s) and K+(s) are defined in (5.6)
and (5.7)). Note that for any diagonal system K+(s), K+(s) = D−1K+(s)D.
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However, the passivity index of D−1G+(s)D can be significantly reduced by
choosing an appropriate frequency-dependent D matrix. After replacing ∆̃ (s)
with G+ (s), the scaling matrix D can be found by solving Problem 4.14
following the numerical method given in Problem 4.15. The diagonally scaled
passivity index can be defined as

νD

(
G+ (s) , ω

)
� −1

2
λ
{
D−1 (ω)G+(jω)D (ω) + D (ω)

[
G+(jω)

]∗
D−1 (ω)

}
.

(5.13)
Therefore, (5.3) in Theorem 5.1 can be replaced by the following condition:

ν− (w(s), ω) < −νD

(
G+(s), ω

)
. (5.14)

Now let us study the effects of diagonal scaling. Given a stable process
transfer matrix with signs adjusted, G+(s) ∈ Cm×m, diagonal scaling of the
process at frequency ω gives:

D(ω)−1G+(jω)D(ω)

=

⎡⎢⎢⎢⎣
d−1
1 0 · · · 0
0 d−1

2 · · · 0
...

...
. . .

...
0 0 · · · d−1

m

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

G+
11 G+

12 · · · G+
1m

G+
21 G+

22 · · · G+
2m

...
...

. . .
...

G+
m1 G+

m2 · · · G+
mm

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dm

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
G+

11 d−1
1 G+

12d2 · · · d−1
1 G+

1mdm

d−1
2 G+

21d1 G+
22 · · · d−1

2 G+
2mdm

...
...

. . .
...

d−1
m G+

m1d1 d−1
m G+

m2d2 · · · G+
mm

⎤⎥⎥⎥⎦ . (5.15)

Clearly, diagonal scaling affects only the off-diagonal elements of G+ (jω) to
make G+ (s) more passive. The effectiveness of diagonal scaling can be seen
from the distillation column example in Section 5.4.1.

5.3.3 Achievable Control Performance

If νD(G+(s), ω) > 0, the decentralized unconditional stability condition given
in (5.3) implies that

1. k+
i (s) is passive.

2. The frequency response of each controller loop ki at frequency ω is con-
fined in the disc centered at (1/ [2νD(G+(s), ω)] , 0) with a radius of
1/ |2νD(G+(s), ω)| (as shown in Figure 5.5), i.e.,∣∣∣∣k+

i (jω) − 1
2νD(G+(s), ω)

∣∣∣∣ ≤ ∣∣∣∣ 1
2νD(G+(s), ω)

∣∣∣∣ , ∀ i, ω. (5.16)
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Fig. 5.5. Frequency response of DUS controller

The size of the disc changes with frequency, but the disc is tangential to
the imaginary axis. Inequality 5.16 implies the limitation on the achievable
performance of the passivity-based controller: At a particular frequency, the
larger the passivity index νD(G+(s), ω), the smaller the controller amplitude
ratio allowed.

The above condition is actually the extension of the DIC condition given
in Theorem 4.4. If the process G (s) is stable with νD(G+(s), 0) ≤ 0, then the
process is DIC. In this case, there exists a frequency band [0, ωb], in which
νD(G+(s), ω) ≤ 0, ∀ ω ∈ [0, ωb]. Assuming no constraints on controller gain,
arbitrarily large amplitude ratios of the controller are possible in this fre-
quency band. The larger the upper bound ωb, the larger bandwidth the pas-
sive decentralized controller can have, and the faster the response that can be
achieved.

5.3.4 Pairing for Dynamic Performance

The analysis of performance achievable by a DUS controller described in Sec-
tion 5.3.3 can be used to determine suitable pairing schemes for DUS control
design. Different pairing schemes result in different transfer functions G(s),
which normally have different passivity indices. Because the diagonally scaled
passivity index implies a constraint on the achievable performance of a passive
DUS controller, a pairing scheme should be chosen such that the resulting G(s)
has small νD(G+(s), ω) at all frequencies concerned. The pairing procedure
for DUS control can be described as follows:

Procedure 5.2 (Pairing for DUS control [15])
1. Determine the transfer function G(s) for each possible pairing scheme.
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2. Find the sign matrix V and obtain G+(s) such that G+
ii (0) > 0 (i =

1, . . . ,m).
3. Screen out the non-DIC pairing schemes by using the necessary DIC

condition given in Theorem 4.3.
4. Calculate the diagonally scaled passivity indices νD(G+(s), ω) at a

number of frequency points.
5. Compare the passivity index profiles of different pairings. The best pair-

ing should correspond to the one with the largest frequency bandwidth
ωb such that νD(G+(s), ω) ≤ 0 for any ω ∈ [0, ωb]. This pairing scheme
would allow using controllers with integral action and the fastest dy-
namic response.

Examples

Now we illustrate how to use the above pairing procedure for DUS control
with two examples.

Example 5.3 (Distillation column [15]). Consider the distillation column de-
scribed by the following 3 × 3 transfer matrix [79]:

G(s) =

⎡⎢⎢⎣
−1.986e−0.71s

66.67s+1
5.24e−60s

400s+1
5.984e−2.24s

14.29s+1
0.0204e−4.199s

5s+1
−0.33e−1.883s

3.904s+1
2.38e−1.143s

10s+1
0.374e−7.75s

22.22s+1
−11.3e−14.78s

33.66s+1
−9.881e−1.59s

11.35s+1

⎤⎥⎥⎦ . (5.17)

The pairing schemes 1-2/2-3/3-1, 1-2/2-1/3-3 and 1-3/2-2/3-1 are not desir-
able because they do not satisfy the DIC condition, as νD (G+ (s) , 0) > 0. As
a result, only three pairing schemes remain, i.e., 1-1/2-2/3-3, 1-3/2-1/3-2 and
1-1/2-3/3-2. The diagonally scaled passivity indices of the resulting transfer
function were calculated and plotted in Figure 5.6 for each pairing scheme.
According to the proposed pairing rule, the pairing 1-1/2-3/3-2, which has the
largest passivity bandwidth, is preferred. This is consistent with the conclusion
from the generalized dynamic relative gain (GDRG) method [60] because the
pairing scheme of 1-1/2-3/3-2 also has the smallest loop interactions measured
by the so-called total interaction potential.

Note that suitable pairing schemes for DUS control may not always lead to
small loop interactions. This is clearly demonstrated in the following example:

Example 5.4 ([15]). Consider another 2×2 process with the following transfer
function [60]:

G(s) =

[ −2e−s

10s+1
1.5e−s

s+1
1.5e−s

s+1
−2e−s

10s+1

]
. (5.18)

The diagonally scaled passivity indices of the process with two different
pairing schemes are shown in Figure 5.7. Off-diagonal pairing has smaller



134 5 Passivity-based Fault-tolerant Control

10
4

10
3

10
2

10
1

10
0

10
1

10
2

10
3

2

1

0

1

2

3

4

Frequency (rad/min)

ν
D

(G
(s

),
ω

)
1 1/2 2/3 3
1 3/2 1/3 2
1 1/2 3/3 2

Fig. 5.6. Example 5.3: Scaled passivity index

10
4

10
3

10
2

10
1

10
0

10
1

10
2

10
3

10
4

1.5

1

0.5

0

0.5

1

1.5

Frequency (rad/min)

ν
D

(G
(s

),
ω

)

Diagonal pairing
Off diagonal pairing

Fig. 5.7. Example 5.4: Scaled passivity index



5.4 Fault-tolerant Control Design for Stable Processes 135

loop interactions (reflected by a smaller total interaction potential) than the
diagonal pairing and thus is preferred according to the GDRG pairing crite-
rion [60]. However, the DUS pairing rule prefers the diagonal pairing scheme.
Off-diagonal pairing has a positive νD index at steady state and thus is not
DIC. While diagonal pairing does lead to larger dynamic interaction which
is evident by the GDRG analysis, the destabilizing effect of the interaction
is insignificant. This was confirmed by a simulation study which showed that
a DUS controller can be used to stabilize the above process. The simulation
study also confirmed that the diagonal pairing scheme allowed using con-
trollers that achieve high control performance [15].

5.4 Fault-tolerant Control Design for Stable Processes

In this section, we show how to design a fault-tolerant control system for a
stable linear process on the basis of the DUS condition given in Section 5.3.

5.4.1 Fault-tolerant PI Control

We first look at the fault-tolerant multiloop PI controller tuning problem.
This is perhaps an interesting topic to process control engineers because PI
controllers are widely used in process industries. Since multiloop PI controllers
with positive gains are passive, they can be further tuned to satisfy passivity-
based DUS conditions. In this section, an optimization-based tuning approach
that achieves both DUS and certain performance specification is presented.

Problem formulation

For multiloop PI controllers, Theorem 5.1 is reduced to the following condi-
tion:

Proposition 5.5 ([14]). Given a stable LTI MIMO process with its transfer
function G(s) ∈ Cm×m, any multiloop PI controller

K(s) = diag {ki(s)} = diag
{
kc,i

(
1 +

1
τI,is

)}
, ∀ i = 1, . . . ,m, (5.19)

with the following parameter relation will unconditionally stabilize the closed-
loop system:

τ2
I,i ≥

k+
c,iνD

(G+ (s) , ω)[
1 − k+

c,iνD(G+ (s) , ω)
]
ω2

∀ ω, i, (5.20)

where G+ (s) = G (s)V and k+
c,i = kc,iVii ≥ 0.
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There are different ways to represent the performance specification for
multiloop control. A simple approach is to use the sensitivity function of
each loop Si (s) (i = 1, . . . ,m) with a weighting function wi (s) that penal-
izes control error at low frequencies. Define γi as a scalar decision variable
for loop i. The controller loops can be designed to maximize γi subject to
|γiSi (jω)wi (jω)| < 1 for all ω and i = 1, . . . ,m. The PI tuning problem is
converted into the following optimization problem:

Problem 5.6 (DUS PI controller tuning [14]). For the ith controller
ki(s),

min
k+

c,i,τI,i

{−γi} , (5.21)

subject to ∣∣∣∣∣ wi (jω)γi

1 + G+
ii(jω)k+

c,i [1 + 1/ (jωτI,i)]

∣∣∣∣∣ < 1, (5.22)

and (5.20) is satisfied ∀ ω ∈ R, i = 1, . . . ,m.

One of the possible choices of the weighting function is wi (s) = 1/s so
that offset-free control can be achieved. A larger γi in (5.22) implies a larger
bandwidth of the control system and therefore a faster response and smaller
disturbance impact. The above optimization problem can also be solved us-
ing any nonlinear optimization tool, such as the MATLAB� Optimization
Toolbox.

PI controller tuning procedure

For a given stable process G(s), a multiloop fault-tolerant PI controller can
be obtained by solving Problem 5.6 using the design procedure as follows.

Procedure 5.7 (DUS PI controller tuning) 1. Determine the pair-
ing scheme for controlled and manipulated variables according to Pro-
cedure 5.2. If none of the pairing schemes is not DIC, then it is not
possible to design a DUS PI controller.

2. For each subsystem G+
ii(s) (i = 1, . . . ,m), solve Problem 5.6 for the

PI controller parameters k+
c,i and τI,i.

3. Adjust the signs of the final subcontroller gain kc,i = Viik
+
c,i to obtain

the final multiloop controller

K(s) = diag
{
kc,i

(
1 +

1
τI,is

)}
, i = 1, . . . ,m.

DUS PI controllers can also be obtained based on existing tuning meth-
ods. For example, we can use the Ziegler-Nichols method to find the initial PI
controller parameters kZN,i and τZN,i. These parameters can then be tuned
independently to satisfy the DUS condition given in (5.20). This tuning ap-
proach can be formulated as follows:
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Problem 5.8 (DUS PI control tuning based on Ziegler-Nichols method
[148]). For the ith controller,

min
F1i,F2i

F 2
1i + F 2

2i (5.23)

such that

F 2
2iτ

2
ZN,i ≥

kZN,iνs(G+(s), ω)
[F1i − kZN,iνs(G+(s), ω)]ω2

, ∀ ω, i. (5.24)

The final PI controller settings are

kc,i =
ViikZN,i

F1i
, τI,i = τZN,iF2i. (5.25)

Example of DUS PI control design

Here we show an example of multiloop DUS PI control tuning for a distillation
column [79]. This example was first published in [149]. The process has the
following transfer function:

G(s) =

⎡⎢⎢⎢⎢⎢⎢⎣

4.09e−1.3s

(33s+1)(8.3s+1)
−6.36e−0.2s

(31.6s+1)(20s+1)
−0.25e−0.4s

21s+1
−0.49e−5s

(22s+1)2

−4.17e−4s

45s+1
6.93e−1.01s

44.6s+1
−0.05e−5s

(34.5s+1)2
1.53e−2.8s

48s+1
−1.73e−17s

(13s+1)2
5.11e−11s

(13.3s+1)2
4.61e−1.02s

18.5s+1
−5.48e−0.5s

15s+1
−11.18e−2.6s

(43s+1)(6.5s+1)
14.04e−0.02s

(45s+1)(10s+1)
−0.1e−0.05s

(31.6s+1)(5s+1)
4.49e−0.06s

(48s+1)(6.3s+1)

⎤⎥⎥⎥⎥⎥⎥⎦ .

(5.26)
This process is stable and G+(s) = G(s) because all diagonal elements of
G(0) are positive. For the given pairing scheme 1-1/2-2/3-3/4-4, the original
(ν− (G+(s), ω)) and diagonally scaled (νD (G+ (s) , ω)) passivity indices are
plotted in Figure 5.8, from which it can be seen that the scaled index is
significantly smaller. It is observed that the process with this pairing scheme
is DIC as νD(G+(s), 0) < 0. The sensitivity weighting function wi(s) = 1

s was
chosen for each control loop. The DUS PI controller was designed following
Procedure 5.7. For comparison purposes, PI controller parameters were also
calculated using the biggest log modulus tuning (BLT) method [79]. In the
BLT design, two different “biggest log modulus” values, Lmax = 4 and Lmax =
8), were used (a smaller Lmax would result in a more robust control system
while a larger Lmax can lead to better performance). The controller parameters
from all design approaches are listed in Table 5.1. Simulation studies were
performed for all controllers. The performance of the DUS PI controller and
the BLT controllers are compared in Table 5.1 in terms of the integral of time-
weighted absolute error (ITAE) of the first 1000 minutes. The step-change
responses are exemplified by the response of Loop 1, as shown in Figure 5.9.

From Table 5.1 we see in general that the proposed approach achieves bet-
ter performance than the BLT method with Lmax = 4. Compared with the
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Table 5.1. Multiloop PI controller settings

Approach PI controller Loop 1 Loop 2 Loop 3 Loop 4

BLT method
(Lmax = 4)

kc

τI

ITAE

0.393
145

1.95 × 105

0.495
31.0
4400

0.310
31.0

1.06 × 105

0.927
93.8

9.12 × 104

BLT method
(Lmax = 8)

kc

τI

ITAE

0.923
61.7

1.12 × 104

1.160
13.2
273

0.727
13.2
4246

2.170
40.0
4051

DUS PI
control

kc

τI

ITAE

0.867
47.1
7168

0.848
37.7
1258

0.772
24.6
9262

0.854
40.0

1.13 × 104

BLT controller design with Lmax = 8, the DUS controller performs better in
Loop 1 but worse in other loops. This can be explained because the proposed
design method is based on the passivity index of the entire process model,
which reflects the overall stability constraints resulting from both the process
dynamics and loop interactions. The large time delay and the second-order
dynamics in G11(s) lead to a large overall passivity index. This large passiv-
ity index imposes a constraint on the performance achievable for each loop.
From this example, it can be seen that decentralized unconditional stability
is a demanding requirement and as such, controllers may have to sacrifice
performance to achieve DUS.

5.4.2 Decentralized Fault-tolerant H2 Control Design

Now we present the design approach of general DUS control systems that
achieve H2 control performance. For a given system with a transfer function
G(s), its H2 norm is defined as follows [156]:

‖G‖2 � sup
σ>0

{
1
2π

∫ ∞

−∞
tr [G∗ (σ + jω)G (σ + jω)] dω

} 1
2

. (5.27)

If G(s) is analytic in Re(s) > 0, then

‖G‖2 =
{

1
2π

∫ ∞

−∞
tr [G∗ (jω)G (jω)] dω

} 1
2

. (5.28)

In this design, the H2-norm of the closed-loop system that represents the
control performance is minimized. This subsection is based mainly on the
work developed by the authors and their co-worker [16].

The decentralized fault-tolerant H2 controller design problem can be
stated as follows: Given an m×m LTI stable process with a transfer function
G(s), find a decentralized controller K(s) = diag {ki(s)} (i = 1, . . . ,m) such
that the DUS condition is satisfied and an H2 nominal performance for each
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control loop is optimized. If a stable and minimum phase weighting function
w(s) can be chosen such that ν− (w(s), ω) < −νD (G+(s), ω), where G+(s)
is given in (5.6), the controller design problem of designing the ith controller
(i = 1, . . . ,m) can be mathematically formulated as follows:

Problem 5.9.
min
ki(s)

{γi} , (5.29)

subject to

k′
i(s) = Viiki(s) [1 − w(s)Viiki(s)]

−1 is passive, ∀ i = 1, . . . ,m, (5.30)

and
‖Ti (Gii, ki)‖2 < γi, (5.31)

where Ti (Gii(s), ki(s)) is the closed-loop transfer function (representing the
control performance) whose H2-norm needs to be minimized. Gii(s) is the ith
diagonal element of G(s) and Vii is the ith diagonal element of the sign matrix
V given in (5.5).

A typical choice of the closed-loop transfer function is as follows:

Ti (Gii(s), ki(s)) =
[
wkiki(s) [I + Gii(s)ki(s)]

−1

wsi(s) [I + Gii(s)ki(s)]
−1

]
, (5.32)

where wsi(s) is the weighting function for sensitivity and wki is a constant
weight to penalize the controller gain. This is an independent design approach
because each control loop should be designed to satisfy the same condition
given in (5.30).

5.4.3 Selecting the Weighting Function w(s)

The weighting function w(s) must be stable and minimum phase because w(s)
will be absorbed into the final controllers. It is also desirable that this transfer
function is simple and of low order. If G+(s) is DIC, a typical w(s) could be
chosen to have the following form:

w(s) =
ks(s + a)

(s + b)(s + c)
, (5.33)

where a, b, c and k are positive real parameters to be determined.
If G+(s) is not DIC, the weighting function w(s) does not possess a zero

at s = 0. In this case, the following form can be used:

w(s) =
k(s + a)(s + b)
(s + c)(s + d)

. (5.34)

With such a weighting function w(s), the final controller K(s) = diag {ki(s)}
(i = 1, . . . ,m) does not have integral action.



5.4 Fault-tolerant Control Design for Stable Processes 141

If the passivity indices at nω frequency points[
νD (G+(s), ω1) , νD (G+(s), ω2) , · · · , νD (G+(s), ωnω )

]
(5.35)

are obtained, the parameters of w(s) can be found by solving the following
optimization problem:

Problem 5.10.

min
a,b,c,k

nω∑
i=1

[
Re (w (jωi)) − νD

(
G+(s), ωi

)]2
, (5.36)

subject to

Re (w (jωi)) > νD

(
G+(s), ωi

)
, ∀ i = 1, . . . , nω. (5.37)

Like Problem 5.6, the above problem can be solved by using any nonlinear
optimization solver, such as the MATLAB� Optimization Toolbox.

5.4.4 Control Synthesis

We can simplify the control design task by constructing the DUS controller
K(s) = diag {ki(s)} (i = 1, . . . ,m) indirectly. From Figure 5.3, we can see
that

K(s) = V K ′(s) [I + w(s)K ′(s)]−1
. (5.38)

Therefore, we can first design the system K ′(s), which is required to be pas-
sive, and then obtain the final controller using (5.38). The passive controller
K ′(s) = diag {k′

i(s)} (i = 1, . . . ,m) can be found by solving the following
problem:

Problem 5.11. For all i = 1, . . . ,m

min
k′

i(s)
{γi} , (5.39)

subject to
k′

i(s) is passive, (5.40)

and
‖T ′

i (Gii, k
′
i)‖2 < γi. (5.41)

The closed-loop transfer function Ti (Gii(s), k′
i(s)) gives a performance

constraint for the ith loop as a function of k′
i(s). For the equivalent per-

formance specification as given in (5.31),

Ti (Gii(s), k′
i(s)) =

[
wkiViik

′
i(s) [I + Gii(s)Viik

′
i(s) + w(s)k′

i(s)]
−1

wsi(s) [I + w(s)k′
i(s)] [I + Gii(s)Viik

′
i(s) + w(s)k′

i(s)]
−1

]
.

(5.42)
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For a given LTI stable process G(s) ∈ Cm×m, assume the following state-space
representations (for i = 1, . . . .m):

G+
ii(s) := (Agi, Bgi, Cgi, Dgi) , (5.43)
w(s) := (Ap, Bp, Cp, Dp) , and (5.44)

wsi(s) := (Awi, Bwi, Cwi, Dwi) . (5.45)

The following augmented plant can be constructed for the ith loop:

Pi(s) =
[
P11(s) P12(s)
P21(s) P22(s)

]
:=

⎧⎨⎩
ẋ = Ax + B1w + B2u
z = C1x + D11w + D12u
y = C2x + D21w + D22u

, (5.46)

where

A =

⎡⎣ Agi 0 0
0 Ap 0

−Bwi 0 Awi

⎤⎦ , B1 =

⎡⎣ 0
0

Bwi

⎤⎦, B2 =

⎡⎣ Bgi

Bp

−BwiDgi

⎤⎦ ,

C1 =
[−DwiCgi 0 Cwi

0 0 0

]
, D11 =

[
Dp

0

]
, D12 =

[−DpDgi

wki

]
,

C2 =
[−Cgi −Cp 0

]
, D21 = I, D22 = −Dgi −Dp,

such that

Fl (Pi(s), k′
i(s)) = P11(s) + P12(s)k′

i(s) [I − P22(s)k′
i(s)]

−1
P21(s)

= Ti (Gii(s), k′
i(s)) .

(5.47)

Therefore, the problem becomes finding a passive solution to the H2 con-
trol problem of the augmented plant Pi(s). Many existing H2/passive control
design approaches (e.g., [42, 51]) cannot accommodate the performance spec-
ification given in (5.32), because they require the following assumptions:

B1D
T
21 = 0 and DT

12C1 = 0. (5.48)

Here we present a method based on successive semidefinite programming
(SSDP) techniques. To keep the control synthesis problem manageable, an
ad hoc LQG control structure (an observer plus state feedback) similar to [42]
is adopted:

k′
i(s) :

{
ẋc = Axc + B2ui + L (yi − C2xc −D22ui)
ui = −Kgixc,

(5.49)

This approach does not require the assumptions given in (5.48). As a result,
H2 problems with any performance specification, such as that in (5.42), can
be solved. From (5.49), controller k′

i(s) should have the following state-space
representation:
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Aki = A + B2Kgi − LC2 − LD22Kgi, Bki = L,
Cki = Kgi, Dki = 0. (5.50)

where L =
(
ΠC2

2 + B1D
T
21

) (
D21D

T
21

)−1 is the observer gain matrix and Π is
the solution to the Riccati equation below:

Π
[
AT − CT

2

(
D21D

T
21

)−1
D21B

T
1

]
+
[
A−B1D

T
21

(
D21D

T
21

)−1
C2

]
Π

−ΠCT
2

(
D21D

T
21

)−1
C2Π + B1B

T
1 −B1D

T
21

(
D21D

T
21

)−1
D21B

T
1 = 0.

(5.51)

The above H2 controller does not include integral action which is needed for
offset-free control. This problem can be overcome by explicitly introducing
integral action into the controller structure. For any passive controller k′

i(s),
k′

i(s) + ksi/s is still passive when ksi ≥ 0. Therefore, the inclusion of an
integrator does not violate the stability condition. The structure for k′

i(s) is
now formed as follows:

AIki =
[
A + B2Kgi − LC2 − LD22Kgi 0

0 0

]
, BIki =

[
L
1

]
,

CIki =
[
Kgi ksi

]
, DIki = 0.

(5.52)

The final controller for the ith loop,

ki(s) = Uiik
′
i(s) [1 + w(s)k′

i(s)]
−1

, (5.53)

will retain the integral action as long as w(0) = 0, which implies that the
process is decentralized integral controllable (DIC). Assume that

Fl (Pi(s), k′
i(s)) := (Acl, Bcl, Ccl, Dcl). (5.54)

By using the positive-real lemma (Lemma 2.16) and property of system H2-
norm, the above control problem can be cast into a matrix inequality problem:

Problem 5.12.
min

Kgi,ksi,P1,P2,Q
{Tr(Q)} , (5.55)

subject to [
AT

kiP1 + P1Aki P1L−KT
gi

LTP1 −Kgi 0

]
≤ 0, (5.56)

ksi > 0, (5.57)
P1 > 0, (5.58)[

AT
clP2 + P2Acl P2Bcl

BT
clP2 − I

]
< 0, (5.59)[

P2 CT
cl

Ccl Q

]
> 0, (5.60)



144 5 Passivity-based Fault-tolerant Control

where Aki is defined in (5.50) and

Acl =

⎡⎣ A B2Kgi B2ksi

LC2 A + B2Kgi − LC2 LD22ksi

C2 D22Kgi D22ksi

⎤⎦ , Bcl =

⎡⎣ B1

LD21

D21

⎤⎦ ,

Ccl =
[
C1 D12Kgi D12ksi

]
, Dcl = D11.

(5.61)

This problem has four matrix decision variables P1, P2, Q, Kgi and one
scalar variable ksi. Inequalities 5.56 to 5.58 imply passivity of k′

i(s). Inequal-
ities 5.59 to 5.60 represent the H2-norm condition. The trace of matrix Q
gives the upper bound of ‖Fl (Pi(s), k′

i(s))‖2
2. Because Acl, Bcl, Ccl and Dcl

are functions of Kgi and ksi, (5.56) and (5.59) are bilinear matrix inequalities
(BMIs). One way to solve the above problem numerically is to use the SSDP
approach.

Approximation of bilinear constraints

One way to solve bilinear matrix inequalities is to approximate the bilinear
terms using the Taylor expansion: Assume that X and Y are two independent
matrix decision variables. Their product around (X0, Y0) is approximated by
using the following equation:

XY = X0δY + δXY0 + δXδY + X0Y0 (5.62)
≈ X0δY + δXY0 + X0Y0, (5.63)

where δX = X −X0 and δY = Y − Y0. Both X and Y are restricted by their
matrix norm:

‖δX‖ ≤ ε, ‖δY ‖ ≤ ε, (5.64)

where ε is an arbitrary small positive number such that the solution region of
(5.63) is not too far from that of (5.62).

Define δKgi = Kgi − Kgi0, δksi = ksi − ksi0, δP1 = P1 − P10 and
δP2 = P2 − P20. By using (5.63), (5.56) to (5.60) can be approximated around
Kgi0, ksi0, P10 and P20. This forms an approximated problem with the deci-
sion variables expressed as deviation values which is detailed in Section A.2
as Problem A.1. When solving the approximated problem, the solution radii
of the deviation variables need to be restricted.

Initial solution

The iterative SSDP approach needs an initial solution such that all constraints
in Problem 5.12 are satisfied. One obvious choice of the initial point is an ar-
bitrary passive controller. With the assumption of Kgi = LTP1, the following
inequality gives sufficient condition for (5.56):
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XTP1 + P1X < 0, (5.65)

where
X = A + B2L

TP1 − LC2 − LD22L
TP1. (5.66)

With left and right multiplying of P−1
1 , and defining W = P−1

1 , the following
LMI can be obtained:

W (A− LC2)
T + (A− LC2)W + LBT

2 + B2L
T − LDT

22L
T − LD22L

T < 0.
(5.67)

Matrix variable W can be solved using any semidefinite programming (SDP)
tool, such as the MATLAB� Robust Control Toolbox. The state feedback gain
matrix can be calculated as

Kgi = LTW−1. (5.68)

The initial value of ksi can be set at an arbitrary positive value (e.g., 1). With
Kgi and ksi fixed and leaving P1, P2 and Q as decision variables, (5.56) to
(5.60) become linear and thus can be solved using the SDP technique. The
results can be used as the initial point for SSDP iteration.

The detailed SSDP iteration procedure for control design can be found in
Section A.2 as Procedure A.2.

Control design procedure

Given a stable process G(s) ∈ C
m×m, a decentralized fault-tolerant H2 con-

trollers can be synthesized by the following steps:

Procedure 5.13 (DUS H2 control design [16])
1. Determine the pairing scheme for controlled and manipulated variables

according to Procedure 5.2. If no pairings satisfy the steady-state pas-
sivity condition νD(G+(s), 0) < 0, the proposed decentralized detunable
H2 controller design method will automatically lead to a DUS controller
without integral action.

2. For the selected pairing scheme, obtain a stable and minimum phase
scalar transfer function w(s) such that ν− (w(s), ω) ≤ −νD (G+(s), ω),
by solving Problem 5.10.

3. For each subsystem G+
ii(s) (i = 1, . . . ,m), choose the weighting func-

tions wsi(s), wki and solve Problem 5.12 by implementing the proposed
SSDP procedure to get the ith controller ki(s).

4. Obtain the multiloop controller K(s) using (5.53).

As an independent design approach, the performance design of DUS con-
trol is based on individual loops. Therefore, good H2 performance for the
individual loops does not guarantee the performance of the overall plant, in
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particular if there are severe interactions between loops. As a result, simula-
tion studies on closed-loop responses with the full process model need to be
performed to check the overall performance. SDP techniques can deal with
variables with structural constraints. Therefore, the above control synthesis
approach can be extended to optimize the H2-norm of the overall system, with
the decentralized control structure. In this case, individual controllers form a
block diagonal control system, which has a block diagonal state feedback gain
matrix:

Kg = diag {Kgi} , i = 1, . . . ,m, (5.69)

and a diagonal coefficient matrix for the integral term

Ks = diag {ksi} , i = 1, . . . ,m. (5.70)

In this case, the observers of controller loops can still be obtained from indi-
vidual process loops. When matrix decision variables Kg and Ks are defined
in Problem 5.12, the state feedback gain and integrator coefficients of all con-
troller loops can be solved simultaneously to optimize for the H2-norm of the
overall plant. However, this approach will be very computationally complex
for processes with large dimensions. Consequently, Procedure 5.13 is often a
more effective approach in practice.

Similarly, a DUS controller can also be designed such thatH∞ performance
is achieved. In this case, the control problem is formulated as follows:

Problem 5.14. For all i = 1, . . . ,m

min
k′

i(s)
{γi} , (5.71)

subject to
k′

i(s) is passive, (5.72)

and
‖T ′

i (Gii, k
′
i)‖∞ < 1. (5.73)

The above problem can be solved by using the SPR/H∞ control synthesis
approach described in Section 3.5.

5.4.5 Illustrative Example

We consider the fault-tolerant control problem of a distillation column. This
case study was first published in [16]. The process has the following transfer
function [79]:

G(s) =

⎡⎢⎢⎢⎢⎢⎢⎣

2.22e−2.5s

(36s+1)(25s+1)
−2.94(7.9s+1)e−0.05s

(23.7s+1)2
0.017e−0.2s

(31.6s+1)(7s+1)
−0.64e−20s

(29s+1)2

−2.33e−5s

(35s+1)2
3.46e−1.01s

32s+1
−0.51e−7.5s

(32s+1)2
1.68e−2s

(28s+1)2

−1.06e−22s

(17s+1)2
3.511e−13s

(12s+1)2
4.41e−1.01s

16.2s+1
−5.38e−0.5s

17s+1

−5.73e−2.5s

(8s+1)(50s+1)
4.32(25s+1)e−0.01s

(50s+1)(5s+1)
−1.25e−2.8s

(43.6s+1)(9s+1)
4.78e−1.15s

(48s+1)(5s+1)

⎤⎥⎥⎥⎥⎥⎥⎦ .

(5.74)
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Here we assume the pairing scheme of 1-1/2-2/3-3/4-4. The process with
this pairing is DIC. Since the diagonal elements of G(0) are all positive,
G+(s) = G(s). The diagonally scaled passivity index is shown in Figure 5.11.
The passivity index weighting function w(s) was obtained by solving Prob-
lem 5.10:

w(s) =
0.0397s (s + 14.078)

(s + 0.760) (s + 0.0227)
. (5.75)

The passivity index of w(s) and −νD (G+(s), ω) are shown in Figure 5.10,
from which it can be seen that ν− (w(s), ω) < −νD (G+(s), ω).

The SSDP procedure was then applied to each loop to produce a multiloop
H2 controller. The constraint given in (5.40) was imposed on all loops to
guarantee DUS. While in theory different performance weighting functions
can be used for different loops, identical weighting functions were used in this
example for simplicity:

wki = 1 × 10−4, (5.76)

wsi(s) =
1

s + 0.001
, (5.77)

for i = 1, . . . , 4. (The following parameters are required to perform the control
design procedure detailed in Section A.2: ε0 = 100, ζ = 0.001 and η = 100).
The H2 performance of each loop together with the number of iterations are
listed in Table 5.2. The transfer functions of the multiloop DUS controller are
listed below:
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Fig. 5.10. Diagonally scaled passivity index
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Fig. 5.11. Passivity indices of the process and weighting function w (s) [16]

Table 5.2. H2 performance

Loop number ‖Fl (Pi, k
′
i)‖2

2

Number of iterations
performed

1 19.385 16

2 3.563 18

3 1.977 21

4 6.178 7

k1(s) =
11.73s5 + 55.77s4 + 41.86s3 + 5.088s2 + 0.2552s + 0.003648

s (s5 + 5.425s4 + 12.16s3 + 26.72s2 + 2.942s + 0.1185)
, (5.78)

k2(s) =
62.42s5 + 519.9s4 + 1079s3 + 644.5s2 + 75.97s + 1.406
s (s5 + 10.92s4 + 71.22s3 + 302.1s2 + 401.1s + 45.57)

, (5.79)

k3(s) =
11.56s5 + 41.72s4 + 99.46s3 + 121.2s2 + 50.58s + 1.088
s (s5 + 4.085s4 + 19.32s3 + 37.35s2 + 50.76s + 35.39)

, (5.80)

k4(s) =
84.76s4 + 593.1s3 + 1094s2 + 541s + 11.74
s (s4 + 10.48s3 + 81.5s2 + 328.1s + 380.3)

. (5.81)

Simulation studies have been conducted with the proposed multiloop H2

controller. The integrals of the time-weighted absolute error (ITAE) of each
loop without loop failures for the first 1000 minutes are as follows:
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Loop 1: 1.369 × 104 Loop 2: 5.442 × 103

Loop 3: 2.606 × 104 Loop 4: 2.063 × 104

Figure 5.12 shows the transient responses of the controlled variables when
step-change inputs are fed into all loops at time 0 and subsequently Loop 1
fails at the 400th minute. It demonstrates that the DUS controller maintains
stability when loop failure occurs.

5.5 Fault-tolerant Control Design for Unstable Processes

Fault tolerance is often more important for control of unstable processes.
Unstable processes are not decentralized unconditionally stabilizable and thus
redundant controllers must be employed. The approach we present in this
section is to stabilize the unstable process using a minimum number of single-
loop static output feedback controllers and then implement the passivity-
based DUS controller in the stabilized process. The static output feedback
controller is built with redundancy and a fault detection and diagnostic (FDD)
system. Static output feedback loops are used because they are simple and
their backup units are cheaper to build and maintain. The performance design
for the overall control system is performed during the (dynamic) DUS control

0 100 200 300 400 500 600 700 800 900 1000
2

1

0

1

2

3

4

Time (min)

S
te

p
ch

an
ge

 r
es

po
se

Loop 1
Loop 2
Loop 3
Loop 4

Loop 1 fails

Fig. 5.12. Step-change responses [16]
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synthesis (as described in the previous section). This section is based mainly
on [17].

5.5.1 Static Output Feedback Stabilization

The key issue is to minimize the level of redundancy of the stabilizing con-
trollers. For a given multivariable process, it is often unnecessary to imple-
ment a proportional controller for each input/output pair to stabilize the
process. For example, the unstable multivariable continuous stirred-tank re-
actor (CSTR) with an exothermic reaction studied in [59] can be stabilized
by a single proportional-only control loop that controls the reactor tempera-
ture. The single-loop stabilizing controllers collectively form a control system
with a multiloop structure. The feasibility of the fault-tolerant control design
hinges on the existence of a static stabilizing output feedback controller with
structural constraints.

Static output feedback stabilizability

The necessary condition for static output feedback stabilizability was given
by Wei [133]:

Definition 5.15 (Blocking zeros [156]). Let G(s) ∈ Cm×m be any proper
real rational transfer matrix with the standard Smith-McMillan form:

M(s) = diag
{

αi(s)
βi(s)

}
, i = 1, . . . ,m. (5.82)

A complex number z0 ∈ C is called a blocking zero of G(s) if G(z0) = 0.

Definition 5.16 (Even parity-interlacing property (PIP) [133]). An
LTI multivariable system with a transfer function G(s) in its Smith-McMillan
form is said to satisfy the even PIP condition if

1. The number of real poles of G(s) between any two real blocking zeros of
G(s) in the closed RHP is even.

2. The number of real blocking zeros of G(s) between any two real poles of
G(s) in the closed RHP is even.

Theorem 5.17 (Necessary condition for static output feedback stabi-
lization [133]). A necessary condition for static output feedback stabilizability
of a given process G(s) is that G(s) satisfies the even PIP condition.

Static output feedback control

The design problem of static output feedback controllers can be described as
follows:
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Problem 5.18 (Static output feedback stabilization with structural
constraints). Given an LTI strictly proper process with the following transfer
function and state-space representation:

G(s) :
{

ẋ = Ax + Bu
y = Cx,

(5.83)

where x ∈ Rn, u ∈ Rm and y ∈ Rm, find a static output feedback control law
u = Fy, F ∈ F , such that the closed-loop system

Σc :
{

ẋ = (A + BFC) x
y = Cx

(5.84)

is stable. F ⊂Rm×m denotes the set of matrices with specified structures, e.g.,
diagonal matrices or diagonal matrices with zero elements at pre-specified
locations.

From the Lyapunov stability condition, the static output feedback stabi-
lization problem is equivalent to the following feasibility problem:

Problem 5.19 ([17]). Find a matrix F with a specified structure and a Lya-
punov matrix P = PT > 0 such that the following matrix inequality is satis-
fied:

(A + BFC)T P + P (A + BFC) < 0. (5.85)

Because both P and F are decision variables, the above inequality is bilin-
ear. Due to the structure constraints on matrix F , the variable transformation
method developed in [42] cannot be used to convert (5.85) into an LMI. Here
we adopt the approach based on the iterative linear matrix inequality (ILMI)
method [27] with an extension so that the structural constraints on matrix
variable F is dealt with properly. According to [27], (5.85) is satisfied if matrix
variables

P > 0, (5.86)

F and a scalar variable α < 0 can be found such that the following LMI holds:[
AT P + PA − XBBT P − PBBT X + XBBT X − αP BT P + FC

T

BT P + FC − I

]
< 0,

(5.87)
where X = XT is any real positive definite matrix. Now Problem 5.18 is
converted into a generalized eigenvalue problem. The static output feedback
matrix F can be found by solving the following two problems alternately until
α < 0:

Problem 5.20 ([17]).
min
P, F

{α} ,

subject to (5.86) and (5.87).
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Problem 5.21 ([17]).
min
P, F

{Tr(P )} ,

subject to (5.86) and (5.87).

In both the above problems, the matrix decision variable F has a certain
prespecified structure.

5.5.2 Fault-tolerant Control Synthesis

The entire fault-tolerant control system consists of two nested multiloop con-
trol subsystems, as shown in Figure 5.13. The inner loop is the static output
feedback controller F built with redundancy, where F ′ is the backup con-
troller. (Here we illustrate the configuration with one backup controller. It is
sometimes necessary to implement more than one backup controller for mis-
sion critical processes). A fault detection and diagnostic system should be
installed to monitor the main static feedback controller and switch the duty
to the backup controller if the main controller fails. System K(s) is a dy-
namic DUS controller which can be designed based on the stabilized process,
following Procedure 5.13.

To reduce the level of redundancy, the static feedback controller F (and
thus the backup controller F ′) should have the minimum number of nonzero
diagonal elements. The minimum number of loops and corresponding structure
of the static feedback controller can be determined by solving Problem 5.19

DUS controller

Main static feedback controller

Backup static
feedback controller

+ yue

F

G(s)

F ′

K(s)
−

+

+

r

Fig. 5.13. Fault-tolerant control system with redundant static output feedback
controller
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with all possible (diagonal) structures of decision matrix variable F , using a
different number of nonzero diagonal elements.

Given an unstable process modelled by (5.83), the decentralized fault-
tolerant control system can be synthesized by the following procedure:

Procedure 5.22 (Fault-tolerant control design [17])
1. Check the existence of a static output feedback stabilizing controller

for a given unstable process by using the necessary condition in The-
orem 5.17. If the condition is not satisfied, then this approach cannot
be used.

2. Find the static multiloop output feedback controller u = Fy, that is,
find a matrix F such that the condition in (5.85) is satisfied. This can
be done by the following iterative procedure.
a) Select Q > 0 and solve P = PT > 0 from the following algebraic

Riccati equation

AT P + PA− PBBTP + Q = 0. (5.88)

Set X = P .
b) Specify the structure of matrix F . It is preferable to start from a

diagonal structure with the minimum number of nonzero diagonal
elements.

c) Solve Problem 5.20 for P , F and α. If α ≤ 0, F is a stabilizing
static output feedback gain. Go to Step 3.

d) Solve Problem 5.21 for P and F using the α obtained in Step 2c.
e) If ‖X − P‖ > δ, a prescribed tolerance, set X = P and go to

Step 2c for the next iteration.
Otherwise, the static output feedback problem is not solvable by
this ILMI approach with the user specified structure of F . Go to
Step 2b and specify an alternative structure of the diagonal matrix
F (by either swapping the positions of nonzero elements along the
diagonal or replacing one diagonal zero with a nonzero parameter).

3. Design the DUS controller K(s) for the stabilized process G′(s) follow-
ing one of the approaches presented in Sections 5.4.1 and 5.4.2.

Because the backup controllers are proportional-only (without any dy-
namics) and are identical to the main output feedback stabilizing controllers,
bumpless transfer is automatically achieved whenever the duty is switched to
the backup controllers in response to main control loop failures. The proposed
control method can cope with multiple control failures that occur simultane-
ously, provided that the failures can be modelled by (5.1).

5.5.3 Illustrative Example

Consider the fault-tolerant control design problem of a CSTR [17]. An exother-
mic reaction A → B takes place and the heat is removed from the CSTR by
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external cooling water. The concentration of component A (cA), component
B (cB) and the reactor temperature T are controlled by manipulating the
feed flow rate Ff , the concentration of component A in the feed, cAF , and the
cooling water temperature Tc. The state-space representation of the linearised
model is given as follows [59]:

ẋ =

⎡⎣−0.1562 0 −0.01553
0.0562 −0.1 0.01553
0.7803 0 0.07958

⎤⎦x +

⎡⎣ 0 0.1 0.1122
0 0 −0.1124

0.0361 0 −0.2

⎤⎦u,

y =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦x,

(5.89)

where x = y =
[
CA, CB , T

]T and u =
[
Tc, CAF , Ff

]T . The system has
an unstable pole of s = 0.004. Procedure 5.22 was implemented. It was easy
to confirm that the process satisfies the even-PIP condition given in The-
orem 5.17, which indicates that it is possible to stabilize the process us-
ing static output feedback. By solving Problems 5.20 and 5.21 iteratively,
it was found that this process can be stabilized by either of the follow-
ing two single-loop output feedback controllers: F1 = diag {0,−0.1497, 0} or
F2 = diag {0, 0,−0.0841}, which represent the least amount of redundant con-
trol loops required. In this case study, the second scheme was finally chosen
because it requires a smaller controller gain.

The next step was to find a DUS controller for the stabilized process.
The pairing study of the stabilized process showed that the diagonal pairing
1-1/2-2/3-3 is the only suitable choice because the other two pairing schemes
lead to non-DIC process models. Based on this pairing, a decentralized uncon-
ditional stabilizing PI controller was designed following Procedure 5.7. The
controllers have the following transfer functions:

k1(s) = −0.327
(

1 +
1

18s

)
,

k2(s) = 0.2
(

1 +
1

60s

)
and

k3(s) = 0.01
(

1 +
1

50s

)
.

(5.90)

To test system stability against control loop failures, simulation studies
were carried out with a series of failure events. Controller F was assumed to
fail at the 3000th minute and the control duty was switched to the backup
controller F ′ at t = 3005 minute. The step-change responses of controlled
variables to the stabilizing controller failure are shown in Figure 5.14. Fig-
ure 5.15 shows the step-change responses of controlled variables when the
following control failures occurred: (1) The control valve for the cooling water
(Loop 1) was stuck at t = 1500 minute. (2) The second loop of the PI DUS
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Fig. 5.14. Responses to failure of stabilizing controller [17]
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Fig. 5.15. Responses to valve stickiness and partial control failure [17]
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controller, k2(s), partially (50%) failed at t = 2500 minute. (Note that the
controlled variables in both figures are deviations from nominal values.) It
can be seen that the closed-loop system remains stable when multiple control
failures occur simultaneously. If integral action is used in each loop, when one
control loop fails, the controlled variables of other loops are affected but will
automatically return to their set points with the proposed control.

5.6 Hybrid Active-Passive Fault-tolerant Control
Approach

The DUS control approach introduced in previous sections is a simple frame-
work that guarantees system stability under control loop failure. However, as a
redundant-free passive fault-tolerant strategy, DUS controllers alone may not
be able to provide satisfactory performance when faults occur. As discussed
in Section 5.1, the main issues of the active approaches are (1) they could be
extremely complex and expensive to design, build and maintain, especially for
the approaches with redundancy; (2) their reliability solely depends on fault-
free and efficient running of the fault detection systems. In this section, we
introduce a hybrid approach that combines the DUS framework with active
fault-tolerant control approaches (with or without redundancy), largely based
on and with an extension to [122]. In this approach, only the failure events
that often occur or have significant impact on process operation are detected
and accommodated by an active FTC while all other possible failure events
are handled by the DUS controller. This approach can significantly reduce the
complexity and improve the cost effectiveness of the FTC system.

This hybrid active-passive FTC system may consist of a fault detection
and diagnosis subsystem, backup control loops (with backup sensors and actu-
ators), a set of controllers predesigned for specific faults and a DUS controller.

5.6.1 Failure Mode and Effects Analysis

In this FTC approach, it is important to identify the “significant” fault events,
which either have high probability of occurrence and/or may lead to severe
consequences for process operation. A commonly accepted approach that can
be adopted for this purpose is the failure modes and effects analysis (FMEA),
which was originally developed by reliability engineers. It includes finding, for
each main component (e.g., sensors and actuators), the failure mode (i.e., in
what way it can fail), failure cause, failure effect and failure probability. More
details can be found in [20]. This analysis will help determine the failure events
that should be detected and isolated by the FDD subsystem and properly
handled by an active fault-tolerant controller (with or without backup loops).
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5.6.2 Fault Detection and Accommodation

There are quite a few existing fault detection and diagnosis approaches. A
comprehensive treatment can be found in [20]. Most of these approaches can
be used in the hybrid active-passive FTC framework. Here we illustrate the
hybrid active-passive FTC approach using the residual method similar to [83,
142]. It uses the process model to predict the process output ŷ (t) for the
measured input u (t). The difference between the actual process output y (t)
and ŷ (t) is called the residual:

µ (t) = y (t) − ŷ (t) . (5.91)

In the faultless case, the residual vanishes or is close to zero. It becomes
significantly large in response to faults, disturbances, modelling errors and
estimation errors of initial conditions. The FDD system tests the residuals
against thresholds that are selected theoretically or empirically to determine
possible faults. For sensor fault detection, the well-known Kalman filter can
be employed in residual generation to reduce the effects of noise and the
estimation errors of initial state values. Consider an LTI process:

ẋ = Ax + Bu + Gw,

y = Cx + Du + v,
(5.92)

with control inputs u, process noise w and measurement noise v. The noise
covariance matrices are

E{wwT } = Qm, E{vvT } = Rm and E{wvT } = Nm. (5.93)

When a sensor fault happens, the output equation of (5.92) becomes

yf = Cfx + Dfu + vf , (5.94)

where yf is the output vector y with the element(s) corresponding to the
faulty sensor(s) set to zero. Matrices Cf and Df can be obtained by setting
the rows in matrices C and D that correspond to the faulty sensor(s) to zero
vectors. There is one pair of matrices Cf and Df for each “significant” sensor
fault scenario, including the combination of different sensor faults. A bank of
separate Kalman filters is designed based on the faultless (normal) case and a
number of possible failure situations. The nominal filter for normal operation
is as follows [122]:

˙̂x = Ax̂ + Bu + K0(y − Cx̂−Du). (5.95)

The filter for the ith fault scenario is given by

˙̂xf,i = Ax̂f,i + Bu + Kf,i(yf,i − Cf,ix̂f,i −Df,iu), (5.96)

where x̂ and x̂f,i are the estimate of states. Matrices K0 and Kf,i are the
Kalman estimator gains, which can be calculated by solving the algebraic
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Riccati equation for Kalman filters. If there are nf failure scenarios which
need to be isolated, a bank of (nf + 1) Kalman filters should be implemented
simultaneously. The error of output estimation can be calculated as the resid-
uals:

• Filter for faultless operation:

ν0 = y − Cx̂−Du. (5.97)

• Filter i ( i = 1, . . . , nf ):

νi = yf,i − Cf,ix̂f,i −Df,iu. (5.98)

If no sensor fault occurs, all Kalman filters should be zero-mean, Gaussian
innovation processes with limited covariance. When the ith fault scenario
occurs (assuming the process is still observable in this scenario), all but the
ith Kalman filter will produce a residual that is no longer vanishing or near
zero, and the covariance will increase because of the erroneous measurement
data. The sensor failure scenarios can be isolated by using either a hypothesis
test if the occurrence probability of each failure scenario is known (e.g., [83]),
or a deterministic filter. In the latter case, an exponentially weighted moving
average filter within a time interval ∆T can be used (as in [5]):

µi =
∫ k∆T

(k−1)∆T

e−λ(t−τ) ‖νi‖2
dτ, ∀ i = 0, . . . , nf , (5.99)

where λ is a positive smoothing constant. The sensor failure scenarios (one
scenario can have several faulty sensors) can be detected and isolated by
comparing directly µi with a predetermined threshold µ̄i:

• If µi < µ̄i ∀ i = 0, . . . , nf , then no fault occurs.
• If µi < µ̄i and µj > µ̄j ∀ j = 0, . . . , nf , j �= i, then fault scenario i is

detected.

In any other situations, e.g., where more than one residual is smaller than
its threshold, an unisolated fault scenario may have occurred. In this case,
the active FTC is inactive and an alarm is set off, requesting engineers to
investigate the problem. The control system stability is maintained by the
DUS controller. The above FDD approach is effective when the states of the
process are observable from the remaining healthy sensors, that is, {C,A} and
{Cf,i, A} (i = 1, . . . , nf ) are observable. In some cases, explicitly or implic-
itly redundant sensors should be installed such that the above observability
condition is satisfied. In the latter case, some sensors measure different pro-
cess variables which are dependent on each other. Most industrial processes
are equipped with implicit redundant sensors so that the operators can cross-
check the feedback from sensors.

The above FDD method can also be applied to detect actuator faults,
where the state equation of (5.92) becomes
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ẋ = Ax + Bfu + Gw, (5.100)

where the column of matrix Bf corresponding to the faulty actuator is set to
a zero vector. Actuator faults can also be detected by the actuator built-in
feedback (e.g., the valve position feedback from a control valve) or sensors
that measure actuator outputs directly or indirectly.

Once a fault scenario is detected by the above FDD system, the estimated
state information from the Kalman filter can be used to reconstruct the virtual
sensor output. If the ith fault scenario is detected, then the virtual sensor
output can be calculated based on the states in the ith FDD filter, i.e.,

˙̂xf,i = Ax̂f,i + Bu + Kf,i(y − Cf,ix̂f,i −Df,iu),
ŷ = Cx̂f,i + Du.

(5.101)

5.6.3 Control Framework

Figure 5.16 shows an example of a hybrid FTC system consisting of a DUS
controller, a FDD unit, backup actuators and virtual sensors. The FDD unit
detects possible actuator and sensor faults. If an actuator fault is detected, a
backup actuator will be implemented. If a sensor fault is detected, the virtual
sensor output is used instead of the actual faulty sensor. The control design
procedure is as follows:

Procedure 5.23 (Hybrid FTC design)
1. Conduct the failure mode and effect analysis to identify the sen-

sor/actuator faults which have high occurring rates or have signif-
icant impact on process operation. This requires prior knowledge of
sensor/actuator failure rates and past process operating data, in par-
ticular, statistics of past failure events.

2. When the state observability of the process is not satisfied under some
sensor failures which need to be detected and isolated, implicitly or
explicitly redundant sensors need to be added to maintain state observ-
ability in these fault scenarios. If a faulty actuator may have significant
impact on process operation or cause system instability, a backup ac-
tuator should be implemented.

3. Design FDD filters for the fault scenarios identified in Step 1 according
to Section 5.6.2.

4. Design the virtual sensors using (5.101).
5. Design a DUS controller to deal with failures that are not detected or

not significant, following Procedure 5.13.
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Fig. 5.16. Hybrid FTC system

5.7 Summary

In this chapter, we have discussed the framework of passivity-based fault-
tolerant control. It is built on the decentralized unconditional stability (DUS)
condition. We can use this framework to design fault-tolerant controllers that
are redundant-free for stable processes or with a low level of redundancy for
unstable processes. In practice, the DUS control should be combined with
fault detection and diagnosis and fault accommodation techniques to deliver
cost-effective fault-tolerant control.



6

Process Controllability Analysis Based on
Passivity

Process control has been playing an important role in process industries as in-
creased process integration and tight operating conditions are putting greater
demands on control system performance. For a given process system, the con-
trol performance achievable can be quantified by the input-output control-
lability measure. Controllability analysis can be used in the process design
stage to reveal controllability problems. In this chapter, we will introduce a
controllability analysis approach based on passivity.

6.1 Introduction

The traditional approach to process design and control has been to design
the process and the control systems sequentially. In the first stage, the de-
sign engineer constructs a process flowsheet that optimizes the economics of
the project, including steady-state operating and capital costs. The control
engineer must then devise the control systems to ensure stable dynamic per-
formance and to satisfy the operational requirements [78]. Because little con-
sideration is given to dynamic controllability in this procedure, the outcome
of this approach sometimes is a plant whose dynamic characteristics lead to
severe operating problems and significant economic penalties [80, 93].

For a given process design, dynamic controllability determines whether
the process can be controlled effectively by a feedback control system. Such
controllers need to reject disturbances at a specified steady state for reduced
product variability, and/or to move the process fast and smoothly from one
operating condition to another, including start-up and shutdown [94, 134]. The
definition of input-output controllability in this chapter is similar to process
resilience [86] and switchability [137], rather than the often referred to state
controllability of Kalman.

Consideration of dynamics and control during process design could have
significant economic impact [34]. It is well known that a process design funda-
mentally determines its inherent controllability, because it imposes inherent
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limitations on control performance regardless of the control method imple-
mented. Therefore process controllability analysis should be performed in the
process design stage. This is particularly important when plants become more
complex with a large number of controlled and manipulated variables, and/or
integrated with recycle streams and energy integration.

In the past two decades, integration of process design and control has
drawn considerable interest in both industry and academia. One approach
is to solve the design/control integration problems using optimization tech-
niques (e.g., [71, 94]). To deal with continuous decision variables, such as
process parameters, and discrete (integer) decision variables, such as alterna-
tive process and control structures, the design problems are mathematically
represented as large-scale, mixed-integer nonlinear programming (MINLP)
problems (e.g., [7, 108]). The optimization-based approach makes it possible
to explore economic trade-offs and to handle nonlinear models directly. Ideally,
this approach could solve the problems of process design and control design
simultaneously. However, the amount of computation that the optimization
approach requires may be extremely high. To make the problem manageable,
some existing methods assume that the controlled variables are perfectly con-
trolled at set points and perform optimization without operating variables
[94]. Some other methods assume a linear time invariant control structure
[71]. These approaches may lead to an unrealistic estimate of the achievable
performance. Even with these simplifications, the optimization methods are
still very computationally complex and thus their applications are currently
restricted to small scale problems [93].

Another approach is to undertake the controllability analysis based on
the open-loop characteristics of processes. Manipulated variable constraints,
nonminimum phase behavior, nonlinearity, loop interactions and model–plant
mismatch all impose limitations on process controllability [56, 86]. These ef-
fects have been analysed and assessed by using certain open-loop indicators,
such as minimum singular values, RHP zeros, time delays and condition num-
bers (e.g., [18, 86]). However, the above analysis methods suffer from the
following weaknesses: (1) They are based on linear models and thus are suit-
able only for linear or mildly nonlinear processes; and (2) they suggest only
the likely effect of each attribute on the closed-loop performance but fail to
indicate the overall effect of the characteristics on dynamic controllability.
To deal with nonlinear models and control constraints, the operability index
(OI) method [132] was developed based on operating spaces, which, for a given
static nonlinear model, addresses controllability issues associated with multi-
plicity and mapping from the input space to the output space. This method
was extended to dynamic operability analysis by studying the dynamic oper-
ating spaces achieved within the desired response time [129]. However, these
extensions require solving very computationally intensive nested or iterative
optimization problems.

Passive systems (both linear and nonlinear) represent a class of minimum
phase systems, which are very easy to control, even if they are highly non-
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linear and/or highly coupled. As shown in Chapter 2, a passive system can
be stabilized by a simple static output feedback control law with an arbitrar-
ily high gain, provided that the zero-state detectability condition is satisfied.
We have also seen in Chapters 2 and 3 that the frequency-dependent pas-
sivity index reflects the total destabilizing effect of RHP zeros, time delays
and coupling and may indicate the dynamic performance achievable for linear
systems. The integral controllability results we have seen in Chapter 4 are
examples of passivity-based controllability analysis for decentralized control
systems. Most importantly, the concept of passive systems and the Passivity
Theorem are also valid for nonlinear systems. Intuitively, the passivity index
can be used to infer its controllability. As such, passivity-based controllabil-
ity analysis can be applied to nonlinear processes, where the characteristics
of linear systems such as phase angles and RHP zeros are no longer appli-
cable. In the next section, we will develop a framework for passivity-based
controllability analysis.

6.2 Analysis Based on Extended Internal Model Control

In this section, we extend the internal model control (IMC) framework so that
the concept of passive systems can be used in controllability analysis. We also
illustrate how the extended framework is used in controllability analysis for
linear and nonlinear processes.

6.2.1 Extended Internal Model Control Framework

Consider a feedback control system with a stable process (G) and a controller
(K), as shown in Figure 6.1a (assuming Gff = 0). Here G : u �→ y and
K : e �→ u are multivariable nonlinear operators. The mappings are denoted
as y = Gu and u = Ke, where all the variables are vectors. The dynamic
performance, in terms of disturbance attenuation and set point tracking, can
be represented by the dynamic systems from the disturbance (d) to control
error (e) and from reference (r) to controlled output (y), respectively. If the
process G is stable and strictly input passive (here we adopt the input-output
version given in Definition 2.22), according to Theorem 2.46, the closed-loop
system will be L2 stable if any passive controller K is employed. Such con-
trollers could have arbitrarily large gains to achieve “perfect control” if there
are no constraints on the manipulated variables. If G lacks IFP, then the
controller must have excessive OFP to ensure closed-loop stability. This im-
plies a performance limit because a system with excessive OFP has limited
L2 gain. Assume that a dynamic feedforward system Gff can be found such
that Gp = G + Gff is strictly input passive, then the passivated system Gp

can be stabilized by any passive controller. By loop shifting, it can be seen
that the negative feedback system of K and Gff forms a stabilizing controller
C for the original system G, as shown in Figure 6.1b.
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Fig. 6.1. IFP and controllability

The above feedback system can be presented in an extended IMC structure
[120]. The IMC structure is shown in Figure 6.2, where G is the process system,
G̃ is the process model and Q is the so-called IMC controller. Assuming no
model–plant mismatch, i.e., G̃ = G, and the initial conditions of systems G̃
and G are identical, the closed-loop relation between the process output y(t)
and the reference signal r(t) is affine with respect to Q:

y(t) = GQr(t), (6.1)

where GQ represents systems Q and G connected in series. Therefore, if G is
stable, the condition for internal stability of the closed-loop control system is
determined by the stability of the IMC controller Q. Clearly if G is invertible,
then perfect control is possible by using an IMC controller Q = G−1. If G
is not invertible but an invertible approximation can be found, then the best
performance can be achieved by an IMC controller that inverts the invertible
approximation of G. This shows that

1. Any feedback controller provides an approximate inverse of the plant
model.
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2. Control performance is limited by the invertibility of the process system.

For chemical process control, typical noninvertible components are non-
minimum phase (NMP) elements that generally include time delays and RHP
zeros. It is well known that process NMP characteristics may impose severe
performance limitations on closed-loop systems [114]. Therefore, IMC pro-
vides an open-loop framework for closed-loop system controllability analysis
[86]. Several controllability analysis approaches have been developed for lin-
ear process systems based on IMC [86, 134, 153]. For example, in [153], a
stable linear process model G (s) is factorized into a minimum phase part
M (s) and a nonminimum phase part N (s) using all-pass factorization. The
minimum phase part is invertible and it was proven that the IMC controller
Q (s) = M−1 (s) achieves optimal quadratic control performance if the con-
troller gain is not limited. Therefore, the best performance achievable can be
quantified by the smallest sensitivity function S (s) = I − N (s). However,
such factorization is very difficult (if not impossible) to extend to nonlinear
systems.

The IMC framework can be extended using the concept of passivity. De-
note G̃ as the process model and Gp as the passivated system of G̃ (e.g., using
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the passivation methods given in Section 2.5). The passivity-based control
shown in Figure 6.1 can be represented using the IMC structure depicted in
Figure 6.3, where the IMC controller Q is the feedback system of a passive
system K and Gp. Because G is stable, the closed-loop stability is determined
by the stability of the IMC controller Q. Since Gp is strictly input passive
and stable, the stable IMC controller Q can be parameterized by any passive
K, according to the Passivity Theorem. When a passive system K is chosen
to have infinite gain, Q approaches the inverse of Gp. Therefore, the best per-
forming closed-loop system from r to y, subject to closed-loop stability, can
be estimated by GG−1

p , independent of the choice of controller. The system
from reference r to control error e is I−GG−1

p . The passivated process Gp can
be regarded as the passive approximation of G. In this case, process G is de-
composed into a passive subsystem Gp and a nonpassive subsystem (−Gff )
(as in [121]). Because the passive approximation of a process (Gp) is mini-
mum phase and always invertible (additional dynamics may be required to
make the inverse causal), the IFP index of the process indicates its invertibil-
ity. Unlike the factorization approach in IMC-based controllability analysis,
passivity-based decomposition is applicable to both linear and nonlinear pro-
cesses. Note that the final controller C includes K and Gff . Therefore, the
above controller parameterization is not limited to passive final controllers.
From the above discussion, it can be seen that input-output controllability can
be inferred from the input feedforward passivity of the process.

6.2.2 Controllability Analysis for Stable Linear Processes

Here we study controllability in terms of both disturbance rejection and set
point tracking performance. It is assumed that

y (s) = G (s)u (s) + Gd (s) d (s) , (6.2)
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where the process system G (s) ∈ Cm×m, controller output u (s) ∈ Cm, pro-
cess output y (s) ∈ Cm, disturbance d (s) ∈ Cp and the disturbance transfer
function Gd (s) ∈ C

m×p. K (s) is an arbitrary passive controller. The feed-
back system is shown in Figure 6.4. A constant matrix W ∈ Rm×m is used to
rescale the transfer function G (s) such that

G (0)W + WTGT (0) > 0. (6.3)

One possible choice is W = G−1 (0) if G (0) is nonsingular. Gp (s) = G (s)W +
Gff (s) is the passive approximation of the scaled process. Matrix W will be
absorbed into the final controller. Therefore, when K (s) → ∞, the closed-
loop system is y (s) = G (s)WG−1

p (s) r (t), leading to a sensitivity function
(the system from r (t) to e (t)):

S (s) = I −G (s)WG−1
p (s) . (6.4)

Similarly, the disturbance rejection achievable can be represented by the trans-
fer function from d (s) to y (s):

Sd (s) = S (s)Gd (s) . (6.5)

The dynamic tracking and regulating performance achievable can be quanti-
fied by σ̄ (S (jω)) and σ̄ (Sd (jω)), respectively. The largest frequency ω where
σ̄ (S (jω)) first crosses −3dB (≈ 0.707) from below is called the closed-loop
bandwidth, denoted as ωB [114]. Up to ωB, σ̄ (S (jω)) < 0.7 and the con-
troller is effective in improving performance. At frequencies higher than ωB,
the controller is either ineffective (when σ̄ (S (jω)) ≈ 1) or actually degrades
performance (when σ̄ (S (jω)) > 1). A similar comment can be made for
Sd (s), where the combined effects of the feedback controller and the dis-
turbance transfer function Gd (s) are evaluated. A good choice of manipu-
lated/controlled variables often leads to small Gd (s), which implies small im-
pact of the disturbance variables. The larger the bandwidth of the sensitivity
function, the faster the dynamic response that the feedback control system
can achieve.

The key issue here is to find the passive approximation. A frequency
domain controllability approach using the above extended IMC framework
was developed in [124, 125]. Here we present a state-space approach, which
is more intuitive. Assume that the scaled system is given by G(s)W :=
(Ag, Bg, Cg, Dg) and the passivated system is given by Gp(s) := (Ap, Bp, Cp, Dp).
Because feedforward passivation needs only to change the zero dynamics of
G(s)W ,

Ap = Ag, Bp = Bg. (6.6)

According to the positive-real lemma (Lemma 2.16), matrices Cp and Dp

can be found such that (2.42) is satisfied to ensure the passivity of Gp (s).
To achieve offset-free control, we need Gp (0) = G (0)W (i.e., Gff (0) = 0).
Therefore the following condition should be satisfied:
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Dp = (Cp − Cg)A−1
g Bg + Dg. (6.7)

Such a Dp can always be found if G(0) is nonsingular. The passive approxi-
mation can be found by solving the following LMI problem:

Problem 6.1.
min
P,Cp

γ,

subject to

P > 0, (6.8)[
AT

g P + PAg PBg − CT
p

BT
g P − Cp D

]
< 0, (6.9)[

γ2I Cp − Cg

CT
p − CT

g I

]
> 0, (6.10)

where D = − [(Cp − Cg)A−1
g Bg + Dg

]T − [(Cp − Cg)A−1
g Bg + Dg

]
.

Inequalities 6.8 and 6.9 come directly from the positive-real lemma. In-
equality 6.10 represents the constraint on the matrix norm:

‖C − Cp‖ < γ. (6.11)

By minimizing the above matrix norm, a passive approximation of G(s)W
can be found. Alternatively, one may choose to minimize ‖Gff (s)‖∞. In this
case, the following problem should be solved:

Problem 6.2.
min
P,Cp

γ,

subject to (6.8) and (6.9) and

X > 0, (6.12)⎡⎣AT
g X + XAg XBg CT

p − CT
g

BT
g X −γI

[
(Cp − Cg)A−1

g Bg

]T
Cp − Cg

[
(Cp − Cg)A−1

g Bg

] −γI

⎤⎦ < 0. (6.13)

Inequalities 6.12 and 6.13 represent the following infinity-norm constraint:

‖Gff (s)‖∞ < γ. (6.14)

To illustrate passivity-based controllability analysis, we consider the con-
trol scheme selection problem for a binary distillation column as follows:
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Table 6.1. Dynamic controllability of binary distillation column

Configuration ωB (rad/min) Settling time (min)

D − V 0.028 164.3

RR − V 0.019 242.1

R − V 9.1 × 10−4 5054.9

Example 6.3 (Binary distillation column control). Consider the binary distil-
lation column control problem studied in [146]. The process has a single feed
stream and bottom and overhead streams as product streams. Candidates for
manipulated variables are reflux ratio (RR), reflux flow (R), distillate flow
(D) and vapor boilup (V ). The controlled variables are the distillate compo-
sition (xD) and bottom composition (xB). The purpose of this study is to
determine the controllability of different control schemes (with different ma-
nipulated variables). The process models for different configuration are given
as follows [146]:

GDV (s) =

⎡⎣ −2.3
(29.4s+1)(0.2s+1)

1.04e−19s

(1.35s+1)
3.1e−1.5s

(19s+1)2
1.8(77s+1)

(21.2s+1)(0.9s+1)

⎤⎦, (6.15)

GRV (s) =

⎡⎣ 16.3
(18.1s+1)

−18
(21.4s+1)

−26.2e−1.4s

(47.6s+1)(1.2s+1)
28.63

(47.6s+1)(4.4s+1)

⎤⎦, (6.16)

GRRV (s) =

⎡⎣ 1.5
(34.2s+1)(4.1s+1)

−1.12
(1.4s+1)

−2.06e−2.3s

(23.6s+1)2
4.73

(19.7s+1)(0.7s+1)

⎤⎦. (6.17)

By solving Problem 6.2, the maximum singular values of the achievable sen-
sitivity functions for different configurations are obtained, as shown in Fig-
ure 6.5. The closed-loop bandwidth and approximate settling time of all con-
figurations are summarized in Table 6.1, from which it can be seen that the
(D − V ) configuration has the largest bandwidth and configuration (R − V )
gives the worst performance achievable.

The qualitative ranking of dynamic controllability is confirmed by the
closed-loop dynamic simulation with multiloop PI controller tuned using the
biggest log-modulus tuning (BLT) method [146].

As mentioned earlier, W = G (0)−1 is a good choice for the scaling matrix
in most cases. An optimal rescaling matrix W can also be found such that the
frequency range in which G (jω)W is positive real is maximized by solving
the following problem:
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Problem 6.4 ([105]).
max

W
ω,

subject to

G(0)W + WTG(0)T > 0, (6.18)

G(jω)W + WTG(jω)� > 0. (6.19)

For nonlinear process systems, a passive approximation can be obtained by
using the input feedforward passivation approach presented in Section 2.5.1, if
the storage function of the nonlinear process is known. In this case, a nonlinear
system from r to e and from d to y can be obtained. Simulation studies
can be performed to analyse process dynamic controllability. This approach,
however, requires an analytical (rather than numerical) approach and thus
can be very complex and difficult to implement for general nonlinear process
systems (e.g., finding storage functions for arbitrary nonlinear systems can
be a formidable task itself!). In the next few sections, we limit the scope to
the steady state or simple dynamics so that a numerical approach can be
developed for controllability analysis for nonlinear processes.
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6.3 Regions of Steady-state Attainability

Controllability analysis for full nonlinear general dynamic models is often
very difficult, mainly for two reasons: (1) such an analysis is very complex;
(2) information on the process dynamics is usually very limited. Steady-state
controllability analysis tools are very useful because information from steady-
state simulations, material balance calculations as well as plant operation
(plant historical data, plant step tests, etc.) can be used for analysis [132].
Many existing steady-state analysis approaches are limited to linear/linearised
process models. For example, the RGA (the ratio of the open-loop gain for a
specific pairing of manipulated variables when all other loops are closed [23])
shows the degree of interaction between controlled variables. Analysis based
on singular value decomposition (e.g., the singular value analysis [114] and
condition number [18]) reveals the magnitude of the impact that manipulated
and disturbance variables have on selected controlled variables.

The use of steady-state nonlinear models to assess the static operabil-
ity of a process has recently been suggested by Vinson and Georgakis [132].
The inputs of the process can vary over a certain range, which is called the
available input space (AIS). The output space that can be reached using the
entire AIS, as calculated from the steady-state process model, is referred to
as the achievable output space (AOS) (the AOS can be a function of both
the manipulated variables and disturbance). The desired input space (DIS),
which is a set containing the required values of the manipulated variables can
be determined from desired values of the controlled variables, which form a
desired output space (DOS). A set of operability indices (OI) are defined as
the hypervolume of the intersection between the AOS, DOS, AIS and DIS:

OIy � µ[AOS ∩ DOS]
µ[DOS]

, (6.20)

OIu � µ[AIS ∩ DIS]
µ[DIS]

, (6.21)

where µ[·] is the measure of the hypervolume of the corresponding regions
(in a one-dimensional case, µ[·] measures length; in a two-dimensional case
area; in a three-dimensional case volume, etc.). For example, a process with
an OIy of 1 is a process where every steady-state output in the DOS can
be reached using an input action within the AIS. The above OI indices can
also be defined to account for disturbance effects. However, the steady-state
operability analysis is actually a steady-state feasibility analysis in an open-
loop. As such, it does not tell whether the AOS can be achieved using a
feedback controller. Therefore, the OI analysis does not indicate the closed-
loop operability properties, as Vinson and Georgakis themselves conceded
[132].

Here we discuss an extension to the above steady-state operability analysis,
which can be used to determine the steady-state operating points that are
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attainable in the closed loop, particularly using linear control. This approach
[98] is based on the concept of passivity and the extended IMC framework
presented in the previous section.

While most chemical processes are inherently nonlinear, the majority of
control systems implemented in process industry are linear (particularly for
regulating control) because they are simple to design, implement, operate
and maintain. However, when the process is highly nonlinear, linear control
may produce poor control performance, and even lead to system instability
[89]. In principle, nonlinear processes can be controlled locally using a linear
controller (although maybe only in a very small neighbourhood), provided
their local linear approximations are controllable. Therefore, the real issue is
which operating points are attainable (i.e., offset-free controllable) via linear
output feedback. Similar to [132], this approach requires only steady-state
information on the process. In particular, the following two operating spaces
of interest are discussed:

1. The steady-state region of attraction under linear feedback control [98],
which defines the set of steady-state initial operating conditions in the
input space from which the closed loop with linear control is guaranteed
to converge to the operating point of interest.

2. The steady-state output space achievable via linear feedback [98], which
defines the set of steady-state operating points in the output space to
which the closed loop with linear control is guaranteed to converge starting
from the operating point of interest.

The steady-state region of attraction is related to the solution of a regula-
tion problem for the nonlinear closed loop, whilst the achievable output space
via linear feedback is related to the solution of a servo problem. This section
is based mainly on [98].

6.3.1 Steady-state Region of Attraction

Consider a nonlinear process G defined by the following nonlinear state-space
model:

ẋ = f(x, u),
y = g(x, u),

(6.22)

where x ∈ R
n are the state variables and u, y ∈ Rm are the process inputs and

outputs, respectively. In addition, f(·) : Rn×Rm → Rn and g(·) : Rn×Rm →
Rm are smooth vector valued functions. Assume that the model in (6.22)
defines a steady-state nonlinear map h(·) : Rm → Rm such that

yss = h(uss), (6.23)

where h(·) is a smooth analytic vector valued function. Assume that DOS and
AIS are nonempty and connected bounded subsets of Rm; an operating point
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(u�
ss, y

�
ss) that satisfies the nonlinear relation in (6.23) is said to be feasible if

u�
ss ∈ AIS and y�

ss ∈ DOS.
Now we study conditions such that a feasible operating point (u�

ss, y
�
ss)

can be attained using linear output feedback control. The proposed approach
is based on the IMC framework discussed in Section 6.2.1. Consider the IMC
structure shown in Figure 6.2, where G, G̃ and Q represent the process system,
process model and IMC controller, respectively. Here we restrict the scope
of the proposed conditions to processes G that are open-loop stable in the
following sense:

Definition 6.5 (Asymptotic stability in a region [98]). Consider a non-
linear process G defined by the nonlinear state-space model given in (6.22). It
is said to be asymptotically stable in the region X0 ⊂ Rn if every steady-state
operating point (uss, xss, yss) that satisfies

0 = f(xss, uss),
yss = g(xss, uss),

(6.24)

with xss ∈ X0, is asymptotically stable for every initial condition x0 in X0.

For the nonlinear IMC structure, additional mild assumptions as given in
Section B.4.1 are required to ensure the asymptotic stability of the nonlinear
IMC closed-loop system. Assuming no model–plant mismatch, i.e., G̃ = G,
y(t) = GQr(t). In this case, the stability of the closed-loop system is deter-
mined by that of the IMC controller Q. A sufficient condition for offset-free
control for a constant reference r(t) = rss is that the steady-state mapping of
the IMC controller Q be the right inverse of the process steady-state nonlinear
map h(·) in (6.23).

As we discussed in Section 6.2.1, the IMC controller can be constructed by
using two passive subsystems. If process G is strictly input passive, the IMC
controller can be constructed by using a passive controller K with infinite
gain in negative feedback with G, as shown in Figure 6.3. Here we provide a
more general condition. Figure 6.6 shows how the IMC controller Q can be
implemented as a feedback loop that contains a full dynamic nonlinear model
G̃ of the process and a linear controller C with infinite gain at steady state.
Without loss of generality, we assume that the controller C has the following
form:

C(s) = C̄(s)
K̃

s
, (6.25)

where K̃ > 0 is an m × m constant matrix and C̄(s) is a stable transfer
function.

The set point r�
ss is assumed such that the operating point (u�

ss, y
�
ss) with

y�
ss = r�

ss is feasible. The condition for steady-state attainability of (u�
ss, y

�
ss)

can be derived from the asymptotic stability condition of the IMC controller
Q, as shown in Figure 6.6, when an exogenous constant reference signal r(t) =
r�
ss is applied. The steady-state attainability condition is given as follows:
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+

G̃

C̄(s)K̃/s

IMC controller Q

−

ẽ(t)

y(t)

u(t)e(t) ξ(t)

Fig. 6.6. Implementation of the IMC controller Q

Theorem 6.6 (Steady-state attainability via linear feedback control
[98]). Consider the closed-loop system shown in Figure 6.6. Assume that

1. The dynamics of the linear controller C̄ (s) are described by the following
state-space equations:

C̄ :

{
ż = Az + B ξ

u = C z + D ξ,
(6.26)

(where z ∈ R
nz and ξ ∈ Rm) and matrix A in (6.26) is Hurwitz.

2. The process G and the model G̃ are stable in the sense of Definition 6.5
and G̃ = G.

3. The algebraic equation f(xss, uss) = 0 has a unique solution

x̄ss = ψ(uss), (6.27)

such that ψ(·) is C2.
4. The steady-state relation between ξss and yss is given by

yss = g(xss, K̄ξss) = g
(
ψ(K̄ξss), K̄ξss

)
= h(K̄ξss) � ϕ(ξss), (6.28)

where K̄ = −CA−1B + D is the steady-state gain matrix of C̄ (s) and
ϕ (·) is a mapping from ξss to yss.

Consider a constant reference r(t) = r�
ss such that the corresponding op-

erating point (u�
ss, y

�
ss) with y�

ss = r�
ss is feasible. Let the integral action gain

K̃ be
K̃ = εK̂, (6.29)

where K̂T = K̂ > 0 and ε > 0 is a detuning coefficient. Assume that there
exists a nonempty region Λξ ⊂ Rm such that

[ξ − ξ�
ss]

T [h(K̄ξ) − y�
ss

]
> 0, ∀ ξ ∈ Λξ, (6.30)
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where yss = ϕ(ξss) = h(K̄ξss) is in a steady state. Then, there exists a (pos-
sibly small) ε0 > 0 such that for all 0 < ε ≤ ε0, the process equilibrium
point (u�

ss, y
�
ss) is asymptotically stable if the closed-loop trajectory is such

that ξ(t) ∈ Λξ ∪ {ξ�
ss} for all t ≥ 0.

The above theorem provides sufficient conditions for the asymptotic sta-
bility of a feasible equilibrium point (u�

ss, y
�
ss) using linear output feedback

control. The key condition given in (6.30) is a strictly input passivity con-
dition on the steady-state nonlinear mapping from ξss to yss (including the
nonlinear mapping h(·) and steady-state gain matrix K̄ of the linear system
C̄). This result can be derived from the Passivity Theorem (Theorem 2.44).
To provide a means to obtain the steady-state region of attraction, an alter-
native proof based on the Singular Perturbation Theorem was developed by
the authors and their co-worker. The proof was first published in [98] and is
included in Section B.4.2.

Because Theorem 6.6 is a steady-state condition, the gain of the integral
action K̃ = εK̂ (0 < ε ≤ ε0) can be arbitrarily small. Therefore, the dynamics
of C̄(s) and the nonlinear model G̃ are irrelevant. While this theorem is about
the controllability of a nonlinear process using linear feedback control, the
analysis is based on the steady-state nonlinear model, beyond the studies on
a linearised model around a feasible operating point. Now we can define the
steady-state region of attraction mathematically:

Definition 6.7 (Steady-state region of attraction under linear feed-
back control [98]). Consider a stable nonlinear process G and a feasible equi-
librium point (u�

ss, y
�
ss). Denote the following ellipsoidal region Π

(
K̂, γ, u�

ss

)
in Rm centred at u�

ss as

Πu

(
K̂, γ, u�

ss

)
�
{
u ∈ R

m | (u− u�
ss)

T K̄−T K̂−1K̄−1(u− u�
ss) ≤ γ

}
,

(6.31)
where γ > 0 is a scalar parameter. Then, the steady-state region of attraction
under linear feedback control for the feasible operating point (u�

ss, y
�
ss) is given

by

Ωu(u�
ss) � max

K̂,γ
µ
[
Πu

(
K̂, γ, u�

ss

) ]
,

subject to

Πu

(
K̂, γ, u�

ss

)
⊂ Λu ∩ AIS,

(6.32)

where Λu is the region that results from mapping the region Λξ, where condi-
tion (6.30) in Theorem 6.6 holds, into the input space using the linear steady-
state relation uss = K̄ξss. In addition, µ[·] is a function that measures the
hypervolume of the ellipsoid Π

(
K̂, γ, u�

ss

)
, similar to that used in (6.20) and

(6.21).
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From the above definition, we can see that the steady-state region of attrac-
tion under linear feedback control Ωu(u�

ss) is the largest ellipsoid completely
inscribed in the common region of the AIS and the region where (6.30) holds.
The actual size of Ωu(u�

ss) depends on the chosen operating point (u�
ss, y

�
ss)

because (6.30) is a static strictly input passivity condition at the equilibrium
(u�

ss, y
�
ss) and thus Λu changes with different operating points (u�

ss, y
�
ss). The

region of attraction Ωu(u�
ss) is different from Λu because Ωu(u�

ss) contains
the set of steady-state initial operating conditions in the input space from
which the closed loop with linear control is guaranteed to converge asymp-
totically to the operating point of interest (u�

ss, y
�
ss). A closed-loop trajectory

that originates from any steady-state initial condition (uss, yss) such that
uss ∈ Ωu(u�

ss) will never leave the region Ωu(u�
ss) for all t ≥ 0 (e.g., Ωu(u�

ss)
is a positively invariant set) and will converge to the feasible operating point
(u�

ss, y
�
ss). The proof of the above statement is given in Section B.4.3 as Propo-

sition B.9. Equation 6.32 also formulates the optimization problem that needs
to be solved to determine the steady-state region of attraction. This is a stan-
dard problem in convex optimization theory [22].

The steady-state gain matrix K̄ can be chosen such that Ωu(u�
ss) is guar-

anteed to be nonempty. In this case, K̄ serves as a scaling matrix such that
(6.30) is satisfied in at least the neighbourhood of (u�

ss, y
�
ss). Assume that

the Jacobian of the process steady-state nonlinear mapping evaluated at the
equilibrium point (u�

ss, y
�
ss) is denoted as

J � ∂h

∂u

∣∣∣∣
u=u�

ss

. (6.33)

One natural choice of K̄ is
K̄ = J−1. (6.34)

It can be proved that with (6.34), the steady-state region of attraction under
linear feedback control Ωu(u�

ss) is not empty [98].
The concept of the region of attraction can be illustrated by the following

example from [98]:

Example 6.8 ([98]). Consider a two-input, two-output, stable nonlinear pro-
cess whose input-output steady-state nonlinear mapping is given by the sur-
faces shown in Figure 6.7. Consider the following feasible equilibrium:

u�
ss =

[
2
4

]
, y�

ss =
[
17.63
24.69

]
. (6.35)

Assume that the AIS is the following square region:

AIS = {(u1, u2) | − 10 ≤ u1 ≤ 10 and − 10 ≤ u2 ≤ 10} . (6.36)

From Figure 6.7, it can be seen that there are points in the input space that
exhibit input multiplicity (i.e., there exist multiple different uss values that
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(a) Output y1

(b) Output y2

Fig. 6.7. Steady-state nonlinear map h(·) of the process in Example 6.8 [98]
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Fig. 6.8. Steady-state region of attraction and closed-loop trajectories [98]

map onto the same yss). The shaded region in Figure 6.8 is the region Λu in
the input space in which (6.30) is satisfied. The filled circle inside Λu is the
operating point (u�

ss, y
�
ss). The steady-state region of attraction under linear

feedback control Ωu(u�
ss) is bounded by the largest ellipse completely inscribed

in Λu and in the AIS. The dashed curves in Figure 6.8 show the closed-loop
trajectories obtained when the process G has steady-state initial conditions
represented by the circles. It can be seen that every closed-loop trajectory
with a steady-state initial condition inside Ωu(u�

ss) (from points a, b or c)
converges to the equilibrium (u�

ss, y
�
ss) using linear output feedback control.

On the other hand, closed-loop trajectories with steady-state initial conditions
outside region Λu (from points e, f and g) diverge and eventually move out of
the input region. It is interesting to note that the closed-loop trajectory with
steady-state initial condition inside region Λu but outside Ωu(u�

ss) (point d)
does not converge to the equilibrium (u�

ss, y
�
ss). This shows that region Λu,

which satisfies the passivity condition (6.30) alone, does not represent the
region of attraction.

6.3.2 Steady-state Output Space Achievable via Linear Feedback
Control

Steady-state output space achievable via linear feedback control addresses a
problem related to the region of attraction: given a feasible operating point
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(u�
ss, y

�
ss), what is the set of operating points the closed loop can switch to

starting from (u�
ss, y

�
ss) using one linear controller? This is a servo controlla-

bility problem and can be analysed by using the same IMC framework we used
in Section 6.3.1, as shown in Figure 6.2. This time, we look at the conditions
for which the IMC controller Q in Figure 6.3 is asymptotically stable when
the reference signal r(t) switches from r(t) = y�

ss to a new value r(t) = y′ss.
Assume that system K is passive, Gp = G = G̃, and (u′

ss, y
′
ss) is a feasible op-

erating point. Define ∆u = u−u′
ss, ∆y = Gu−y′ss, Ḡ : ∆u �−→ ∆y. According

to the Passivity Theorem, the sufficient condition for the IMC controller to
be asymptotically stable (i.e., e = 0 is an asymptotically stable equilibrium)
is that system Ḡ is strictly input passive for any (u′

ss, y
′
ss) in the region of

interest. This is an incrementally strictly input passivity condition on process
system G according to the following definition:

Definition 6.9 (Incremental input passivity [32]). Let H : Lm
2e → Lm

2e.
System H is said to be incrementally input passive if

〈Hu−Hu′, u− u′〉T ≥ 0, ∀ u, u′ ∈ Lm
2e. (6.37)

System H is said to be incrementally strictly input passive if there exists a
constant ν such that

〈Hu−Hu′, u− u′〉T ≥ ν ‖u− u′‖2
T , ∀ u, u′ ∈ Lm

2e. (6.38)

Now we generalize the above result with the linear control shown in Fig-
ure 6.6:

Theorem 6.10 (Steady-state attainability via linear feedback control
for step changes in reference). Consider the closed-loop system shown in
Figure 6.6. Assume that K̂ > 0 and the feasible operating point (u�

ss, y
�
ss)

is attainable using linear feedback control for all 0 < ε ≤ ε0, based on the
assumptions and conditions outlined in Theorem 6.6. Define a static mapping
ϕ (ξss) = h

(
K̄ξss

)
, where uss = K̄ξss. Consider a step change in the reference

signal r(t) such that

r(t) =

{
y�

ss , t < 0
y′ss , t ≥ 0,

(6.39)

and assume that the new operating point (u′
ss, y

′
ss) is also feasible. Assume

that h (·) satisfies the following Lipschitz continuity condition:

‖h (u + ∆u) − h (u)‖ ≤ γ ‖∆u‖ , (6.40)

for all u in the AIS and 0 ≤ γ < ∞. Suppose that there exists a nonempty
region Θu ⊂ AIS ⊂ R

m such that

1. The following condition is satisfied:

∂h

∂uss
K̄ > 0, ∀ uss ∈ Θu, (6.41)

or
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2. The steady-state mapping ϕ (·) is incrementally strictly input passive for
any ξss = K̄−1uss, ∀ uss ∈ Θu.

Then the new operating point (u′
ss, y

′
ss) is asymptotically stable if the

closed-loop trajectory is such that u(t) ∈ Θu for all t ≥ 0.

The above theorem is an extended version of Theorem 2.2 in [98]. While
the incremental input passivity condition is more intuitive and reveals the
link between controllability and passivity, it is very hard to check numerically.
Condition 1 is much easier to verify and thus better used in controllability
analysis. The proof of Condition 1, which is slightly different from that given
in [98] is presented in Section B.4.4. The equivalence of Conditions 1 and 2
was proved in [97]. The steady-state output space achievable via linear feedback
control is defined as follows:

Definition 6.11 (Steady-state output space achievable via linear feed-
back control). Consider a stable nonlinear process G and a feasible equilib-
rium point (u�

ss, y
�
ss). Denote the following ellipsoidal region Πy

(
K̂, γ, yss

)
in Rm centred at yss as

Πy

(
K̂, γ, yss

)
�
{
y ∈ R

m | (yss − y)T K̂(yss − y) ≤ γ
}
. (6.42)

A steady-state operating point yss is achievable from (u�
ss, y

�
ss) via linear

feedback control if there exists a K̂ and γ such that the ellipsoidal region
Πy

(
K̂, γ, yss

)
is completely inscribed in Θy and covers y�

ss, that is,

y�
ss ∈ Πy

(
K̂, γ, yss

)
⊂ Θy, (6.43)

where Θy is the region in the output space that results from mapping the region
Θu where (6.41) holds, using the nonlinear steady-state relation yss = h(uss).
The steady-state output space achievable via linear feedback control for the
feasible operating point (u�

ss, y
�
ss) is the set of all yss which are achievable

from (u�
ss, y

�
ss) with a single constant K̂ but possibly different γ.

The above definition is an extension of the achievable output space defined
in [98]. This is illustrated by Figure 6.9 for an arbitrary region Θy. The steady-
state output space achievable via linear feedback control Ωy(y�

ss) contains the
set of steady-state operating points in the output space to which the closed
loop with linear control is guaranteed to converge starting from the operating
point of interest (u�

ss, y
�
ss).

Now let us study the steady-state output space achievable of the process
system in Example 6.8:

Example 6.12 ([98]). Consider stable nonlinear process G described in Exam-
ple 6.8 with the same available input space (AIS) and the feasible operating
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point (u�
ss, y

�
ss) in (6.35). Assume that K̄ and K̂ are those selected in Ex-

ample 6.8. First, we find the region Θu such that the condition ∂h
∂u K̄ > 0

is satisfied. The region Θu is then mapped into the output space using the
nonlinear steady-state relation yss = h(uss). The result is the irregular shaded
region Θy shown in Figure 6.10. The points yss that satisfy (6.43) are obtained
numerically. The resulting output space achievable via linear feedback control
Ωy(y�

ss) is given by the region shown in Figure 6.10 around the steady-state
output y�

ss = [17.63, 24.69]T which is represented by a filled circle. A magni-
fied image of Ωy(y�

ss) is shown in Figure 6.11. The dashed lines in Figure 6.11
show the simulated closed-loop trajectories of the process output when the
reference signal r(t) changes from y�

ss to the value y′ss marked with squares.
Observe that since y′ss ∈ Ωy(y�

ss), the closed-loop trajectories are guaranteed
to converge to the new operating point. Unlike the steady-state region of at-
traction for linear feedback control Ωu(u�

ss), the steady-state output space
achievable Ωy(y�

ss) is not positively invariant for y(t). This is clearly shown in
Figure 6.11. The closed-loop output trajectory converges toward the steady-
state point in the upper-left corner, exits and then reenters the region Ωy(y�

ss).
The trajectory remains inside the region Θy , where (6.41) holds.

6.3.3 Steady-state Attainability by Nonlinear Control

From the analysis in the previous subsections, we can obtain more insights
into nonlinearity and linear controllability. A variety of nonlinearity measures
have been proposed to quantify the degree of nonlinearity of the (open-loop)
process, e.g., [33, 48, 118]. The following statement by Eker and Nikolau [36]
represents the common belief: “The premise of these approaches is that if
a nonlinear open-loop system is far from a linear one, then linear control
will, most probably, be inadequate for the closed loop.” However, it has been
recently discovered that the degree of nonlinearity of the open-loop process
may not always be related to poor performance with a linear controller [36, 89].
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This is precisely what we have seen from the passivity-based controllability
analysis: A highly nonlinear process may not necessarily be difficult to control
if the operating region satisfies the passivity condition (6.30). Example 6.8
shows that a highly nonlinear process may satisfy (6.30) in a large region Λu.
From the shape of the surfaces shown in Figure 6.7, we can see that a single
linearised model of the process would have serious difficulties in describing
process G over the entire region Λu. Despite this, the above analysis shows
that linear control can guarantee offset-free performance if the steady-state
initial condition is inside the steady-state region of attraction Ωu(u�

ss).
Readers may have noticed that in the steady-state attainability analysis

approach presented in this section, we do not approximate the steady-state
process model yss = h (uss). Instead, we find the regions Θu and Θy in which
the mapping h (uss) is strictly input passive (for the region of attraction) and
incrementally strictly input passive (for the output space achievable) because
we need to find the steady-state attainability by linear control: the final con-
troller in the extended IMC structure shown in Figure 6.3 is guaranteed to
be linear if Gp = G̃. In this case, process G is effectively controlled in closed
loop by the linear controller C(s) in (6.25). If we use a passivated model
Gp �= G̃, then the final controller will be C (s) with the negative feedback of
Gff = Gp − G̃, leading to a nonlinear final controller. Because only steady-
state attainability is concerned, we just need to passivate the steady-state
mapping h (·). In this case, offset-free control may not be achievable in the
region where the passive approximation hp (·) differs from h (·). The problem
is to find a mapping hp (·) such that the volume of the input space in which
hp (uss) = h (uss) is maximized. By implementing hp (·), the regions of steady-
state attainability will be larger because both Θu and Θy will be larger. This
explains why a nonlinear controller can work effectively over a larger range of
operating conditions than a linear controller.

One numerical approach to obtain the passive approximation is to assume
that hp (·) can be represented as the linear combination of nonlinear base
functions φ (·), e.g.,

hp (uss) =
k∑

i=1

wiφi (uss) . (6.44)

In this case, the passivation problem is converted into an optimization problem
with the decision variables of wi to minimize the difference between hp (·)
and h (·), subject to the passivity condition on hp (·). This problem can be
solved numerically. Spline functions are good candidates for the nonlinear
base function φ (·) because they are smooth and very flexible. A numerical
approach to passivation using spline functions can be found in [28].

A steady-state mapping function yss = h (uss) with input multiplicity
implies operational difficulties, because no unique solution uss is available
for a desired output value yss. The steady-state attainability condition (6.30)
implies that there is no input multiplicity in the neighbourhood of (u�

ss, y
�
ss).

The attainability condition given in Theorem 6.10 for the achievable output
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space requires more. The incrementally strict input passivity condition implies
that there is no operating point that exhibits input multiplicity in the entire
region Θu.

6.3.4 Numerical Procedure

Although the discussions in Sections 6.3.1 and 6.3.2 are based on the steady-
state mapping h (·), the attainability analysis is often more conveniently
performed based on the numerical values of steady-state operating points
(uss, yss) rather than an explicit nonlinear function h (·). In this case, a set
of operating conditions (uss, yss) with sufficient resolution is required. The
steady-state operating conditions can be obtained by using process simula-
tion software packages, e.g., ASPEN Plus R©. The numerical procedure for the
steady-state attainability analysis is as follows:

Procedure 6.13 (Steady-state attainability analysis)
1. Obtain the steady-state operating conditions using a process simulation

package
a) Build the process flowsheet using a process simulation package.
b) Define the AIS based on the process design.
c) Generate a number of equally spaced points for each input variable

in the AIS.
d) Derive the process steady-state output conditions by evaluating the

process outputs for every input combination inside the AIS. This
can be done easily using a sensitivity analysis tool in a process
simulation package.

e) Export the process output results to be used in the next step.
2. Study the steady-state region of attraction under linear feedback control

Ωu(u�
ss):

a) Select an operating point of interest (u�
ss, y

�
ss). Calculate the Jaco-

bian matrix J of the steady-state nonlinear map at the operating
point (u�

ss, y
�
ss) and corresponding K̄ as in (6.33) and (6.34). Cal-

culate ξss = K̄−1uss.
b) Calculate the region Λu corresponding to all ξss ∈ Λξ, where Λξ is

the region defined in (6.30).
c) Calculate Ωu(u�

ss) by solving the optimization problem in (6.32).
3. Study the steady-state output space achievable via linear feedback con-

trol Ωy(y�
ss):

a) Calculate the region Θu ⊂AIS defined in (6.41).
b) Find the set of corresponding steady-state output values Θy using

a process simulation package for uss ∈ Θu.
c) Calculate the Ωy(y�

ss) by solving the problem given in (6.43).
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6.3.5 Case Study of a High-purity Distillation Column

In this subsection, we illustrate the steady-state attainability analysis using
a high-purity distillation column [106]. Distillation columns have been well
studied in the context of process control. However, most of the distillation
systems considered in the literature are low to moderate purity separation
systems. High-purity distillation columns are highly nonlinear and are known
to be difficult to control [128].

A high-purity distillation column for methanol-water separation is consid-
ered. This distillation column system is similar to that studied by Chiang and
Luyben [30]. The feed stream consisting of 50 mol% methanol is fed into the
column at Tray 67 of a 99 tray column. This column is operated at 1.172 bar.
The distillate product is expected to have a high-purity of 99.9 mol% methanol
while the bottom product will be a water stream containing only 0.1 mol%
methanol. This distillation column is designed by using a rigorous tray to tray
calculation method. The calculation is carried out by using the RadFracTM

model in the ASPEN Plus R© model library. The steady-state design specifica-
tions of the distillation column are summarized in Table 6.2.

Table 6.2. Design specifications of high-purity distillation column

Specification Value

Feed rate (kmol/h) 2300

Feed temperature (oC) 57.22

Feed composition 0.5

Distillate rate (kmol/h) 1150

Distillate temperature (oC) 68.30

Distillate composition 0.999

Bottom rate (kmol/h) 1150

Bottom temperature (oC) 103.96

Bottom composition 0.001

Operating pressure (bar) 1.172

Number of trays 99

Feed tray location (top tray= 1) 67

Tray efficiency 0.75

Reflux ratio 0.864

Reboiler heat duty (MMkcal/h) 19.286

The manipulated variables are the distillate rate (u1) and the reboiler heat
duty (u2). The AIS is defined by 1050 ≤ u1 ≤ 1250 and 17 ≤ u2 ≤ 21 (both
in kmol/h). By varying the values of one input variable over the values of the
other manipulated variable, the corresponding output variables, namely, the
water content in the distillate product y1 and the methanol content in the
bottom product y2 (both in ppm) can be generated. The calculations were
performed by using the sensitivity analysis tool in ASPEN PlusR©. A grid of
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Fig. 6.12. Steady-state region of attraction of the distillation column

101× 101 evenly spaced points defined on the input space is used to generate
a total of corresponding 10201 output points.

Consider a feasible steady-state operating point of u�
ss = [1150, 19.286]T

and y�
ss = [1000, 1000]T . Following Procedure 6.13, both the steady-state re-

gion of attraction Ωu (u�
ss) and achievable output space Ωy (y�

ss) are obtained,
as shown in Figures 6.12 and 6.13 respectively. From Figure 6.12, it can be
seen that Λu covers a large area of the AIS. However, the region of attraction,
Ωu (u�

ss), is much smaller. This means that only a fairly small portion of the
initial operating points in the AIS can be driven toward the operating point
of interest (u�

ss, y
�
ss) in a closed loop by using linear control. For example, the

initial operating point with uss = [1100, 18.5]T can be driven and guaranteed
to converge to (u�

ss, y
�
ss). On the other hand, there is no guarantee that the

initial operating point with uss = [1200, 18.5]T which lies outside Ωu (u�
ss) but

inside Λu, can be driven to (u�
ss, y

�
ss). Therefore, if a linear controller is in-

tended to be implemented, the startup operation is possible only from within
Ωu (u�

ss). The achievable output space Ωy (y�
ss) covers an even smaller por-

tion of the AOS. This indicates that the flexibility of changing the operating
point of interest to a new operating point is very limited. This again confirms
the difficulties of controlling this highly nonlinear process by using a linear
controller.

These results provide a more realistic measure of the process operability
compared to the OI analysis [132]. If the DOS is defined by 10 ≤ y1 ≤ 10000
and 10 ≤ y2 ≤ 10000, then OI= 1 because every desired steady-state output
value in the DOS can be achieved by open-loop mapping of the steady-state
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input within the AIS. However, the steady-state attainability analysis shows
that only a small operating region can be obtained via linear feedback control.

6.4 Dynamic Controllability Analysis for Nonlinear
Processes

As we mentioned in the previous section, dynamic controllability analysis for
general nonlinear process systems is usually very difficult. Here we present a
controllability analysis approach based on approximate nonlinear models. This
section is based mainly on the recent development by the authors and their
co-worker which was reported in [97]. The central idea is to approximate the
nonlinear process model using models with static nonlinearity and linear dy-
namics. Studies have shown that in many cases, such approximate models can
describe nonlinear processes with sufficient accuracy [37, 74]. Linear approxi-
mations of the process dynamics can be obtained from process flowsheet data
using, for example, the approach proposed by Lewin and co-workers [109, 134].
Therefore, based only on process flowsheet data for a nonlinear process, one
may derive an approximate model in the form of a series interconnection of
static nonlinearities and linear dynamics:

y = NoGlNiu, (6.45)

where Ni : Rm → Rm and No : Rm → Rm are input and output static non-
linearities, respectively, and Gl is a linear multivariable model. The above
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block-structured model is called a Hammerstein–Wiener system. Controlla-
bility analysis based on approximate process models is quite manageable and
often gives results that are sufficiently accurate. This approach is built on a
further extended IMC framework [97].

Assume that process model G is represented by a Hammerstein system:

yh = h (u) , (6.46)
y = Glyh, (6.47)

where h (·) is a static nonlinear function. As shown in Figure 6.14, the IMC
controller will be a Wiener system, consisting of a static nonlinear function
n (·) and linear dynamic system Ql, which are ideally the inverses of h (·) and
Gl, respectively. If n (·) = h−1 (·), then,

rh = n−1 (u) = h (u) . (6.48)

The invertibility of the static nonlinear function can be determined by the
following theorem:

Theorem 6.14 ([32]). Consider a nonlinear mapping yh = h (u) : Ωu ⊂
Rm → Ωyh

⊂ Rm. If there exists a nonsingular constant matrix K̄ such that
h
(
K̄u

)
is incrementally input passive and the Lipschitz continuity condition

given in (6.40) is satisfied for all u ∈ Ωu and u + ∆u ∈ Ωu with 0 ≤ γ < ∞,
then, h−1 (·) exists and is a well-defined map from Ωyh

to Ωu.

The above condition is equivalent to Condition 2 of Theorem 6.10. Prac-
tically, we can use (6.41) with K̄ =

(
∂h
∂u

∣∣
u=u�

)
to determine the input region

Θu in which the mapping h (·) is incrementally strictly input passive (u� is an
operating point that belongs to the DIS). If n (·) = h−1 (·), then the output
of the linear system Ql should be confined in the following region:

Θrh � h (Θu) = Θy . (6.49)

Note that because the final controller is nonlinear, the output space of the
static nonlinearity does not need to be confined in the steady-state output
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space achievable via linear feedback control given in (6.43). Now the achievable
performance of the process can be evaluated by the best dynamic control
performance that the linear IMC controller Ql can deliver, subject to the
constraint: rh ∈ Θrh. This constraint on rh(t) represents the influence that
the static nonlinearity h{·} has on the operability of the overall nonlinear
process G. The smaller the invertibility region Θrh

the stronger the limitation
imposed by the static nonlinearity.

One possible way to obtain the dynamic performance achievable is to solve
a constrained nonlinear optimization problem in the time domain, similar to
the optimization approach adopted in the simultaneous process and control
design methodology (e.g., [103]). However, this approach requires huge com-
putational effort and is limited to simple process systems. An easier approach
is to replace the time-domain “hard” constraint rh(t) ∈ Θrh

by a related
(though generally more conservative) constraint on the system norm of the
IMC controller Ql and evaluate the performance of an optimal IMC controller
that is designed subject to the system norm constraint.

Consider a regulating control problem with output disturbance d, as shown
in Figure 6.14. To assist the controllability analysis, the input and output
variables should be normalised componentwise. For example, the normalised
output ỹ = [ỹ1, ỹ2, . . . , ỹm]T is obtained for y = [y1, y2, . . . , ym]T by the
following operation:

ỹi = yi/yi max, (6.50)

where yi max is the largest possible value of yi. Similarly, we can obtain the
normalised variables r̃, r̃h, ũ and d̃. If r(t) = y�, r̃(t) = −d̃(t). A natural choice
is bound by both the disturbance d̃ and r̃h using their ∞-norm, which is the
largest possible value of the all elements of the vector signal for all times. For

example, for d̃ (t) =
[
d̃1(t), . . . , d̃m(t)

]T
,

‖d̃‖∞ � max
τ

(
max

i

∣∣∣d̃i(τ)
∣∣∣) . (6.51)

Then the system norm of Ql can be bounded by its L1-norm ‖ql(t)‖1:

‖ql‖1 �
∫ ∞

−∞
ql(t) dt = sup

d̃

‖r̃h‖∞
||d̃||∞

, (6.52)

where ql(t) is the impulse response of the linear system Ql. Unfortunately,
this may lead to extremely conservative system norm bounds because the ∞-
norm of a signal does not well represent the impact the signal can have on a
dynamic system. For example, rectangular pulse input signals with the same
height but different widths will have the same ∞–norm but can lead to very
different system outputs. A better way to quantify the disturbance is to use
its 2–norm, related to the energy level:

||d̃||2 �
√∫ ∞

0

d̃(t)T d̃(t) dt = υ < ∞. (6.53)
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We then bound r̃h(t) with the ∞− 2 norm, defined as

‖r̃h‖∞−2 � sup
τ

‖r̃h(τ)‖, (6.54)

which is the largest possible Euclidean vector norm of r̃h(t) for all times
(remember we are dealing with multivariable systems), where

‖r̃h(τ)‖ =
√

r̃h(τ)T r̃h(τ). (6.55)

Now we can approximate the constraints on r̃h(t) using the following gener-
alized H2-norm of Ql:

‖Ql‖g = sup
d̃

‖r̃h‖∞−2

||d̃||2
. (6.56)

First introduced by Wilson [141], the generalized H2-norm constraint can
be easily incorporated in control design. Assuming that system Ql (s) has
the state-space representation of (Aq, Bq, Cq, Dq), its generalized H2-norm is
less than γ if and only if there exists a symmetrical matrix P such that the
following LMIs are satisfied [107]:[

AT
q P + PAq PBq

BT
q P −I

]
< 0,[

P CT
q

Cq γ2I

]
> 0,

Dq = 0.

(6.57)

The sufficient condition for ‖r̃h‖∞−2 < α for all d̃(t) subject to ‖d̃‖2 < υ is
that

‖Ql‖g < αυ−1. (6.58)

When r̃h(t) ∈ Θrh
, n (·) inverts h (·), and thus the dynamic performance of

the linear IMC controller can be quantified by the ∞−norm of the sensitivity
function:

‖S‖∞ = ‖I −GlQl‖∞ = sup
d̃

‖ẽ‖2

||d̃||2
. (6.59)

Now the dynamic controllability assessment problem is formulated as the fol-
lowing problem:

Problem 6.15 ([97]).

min
Ql(s)

‖I −Gp Qp‖∞ , (6.60)

subject to

‖Ql‖g < αυ−1. (6.61)
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By using the bounded-real lemma (Lemma 3.17) and (6.57), the con-
straints in the above optimization problem can be represented using matrix
inequalities, which in turn can be converted in LMIs. The sensitivity function
with the smallest ∞-norm can be found by solving the LMI problem. More
details can be found in [97].

6.5 Summary and Discussion

In this chapter, we presented some recent developments of process input-
output controllability analysis based on the concept of passivity, including the
link between passivity, process invertibility and controllability. By extending
the IMC structure, we can quantify the achievable control performance based
on the passive approximation of process systems. Based on this framework, we
introduced steady-state attainability analysis. Using only the process steady-
state operating conditions which are often available in the process design stage,
the steady-state attainability analysis is a useful tool for examining the impact
of process nonlinearity on its controllability. Also based on the extended IMC
structure, we discussed dynamic controllability analysis methods for nonlinear
process systems using approximate models in the Hammerstein form.

The analytical approaches presented in this chapter are valid for input-
output stable processes. For unstable processes, the controllability should be
determined based on both IFP and OFP indices. The OFP index indicates
the minimum gain of the controller required to stabilize an unstable process.
However, IFP and OFP indices are not independent from each other. It is also
very hard to obtain dynamic IFP and OFP indices, particularly for nonlinear
systems. An effective controllability analysis approach for nonlinear unstable
processes is still required.

Passivity-based controllability analysis is an emerging research area. New
developments are still evolving, among which the following trends are partic-
ularly promising:

• Controllability analysis based on the link between thermodynamics and pas-
sivity. Pioneered by Ydstie and co-workers, the links between certain pro-
cess systems which obey the laws of thermodynamics and their passivity
have been recently revealed [2, 3, 143, 144] (which are detailed in Chap-
ter 7). It is possible to determine process controllability from the irre-
versible thermodynamics of process systems. This may lead to heuristic
design rules for better process controllability for chemical engineers.

• Controllability analysis for process system networks. This is a rather in-
teresting topic, because often the coupling of process units has a major
effect on plantwide controllability. Being an input-output property, pas-
sivity is particularly useful in determining the stability of a network of
interconnected processes. It is possible to perform controllability analysis
for complex process networks based on the passivity of each process unit
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and the topology of the interconnection. This will be useful in pinpointing
the sources of controllability problems caused by process interactions.



7

Process Control Based on Physically Inherent
Passivity

by K.M. Hangos and G. Szederkényi

General passivity-based control is difficult without physical insights. Even at
the origin of passivity-based control, the physical analogies of stored and re-
trievable energy of mechanical systems have been used fruitfully. Later, the
notions and techniques to apply the fundamental physical description to de-
sign controllers emerged particularly in the area of mechanical systems and
robotics [115, 130]. Inspired by this fruitful connection, this chapter is devoted
to the thermodynamic foundation of process control.

Process systems can be seen as a class of systems that obey the laws
of thermodynamics. Therefore, it is natural to use thermodynamics as the
underlying physical theory for constructing passivity-based controllers instead
of theoretical mechanics.

The idea of investigating the dissipation and passivity of process systems
based on thermodynamic principles was introduced in the 1990s [2, 38, 100,
144], where its implications for controller design have also been explored.
The approach has also been applied to networks of process systems, i.e., to
composite process systems with several balance volumes in [52].

Following this starting point, there is a wide and growing literature in the
field of connections between thermodynamics, variational calculus and the
theory of Hamiltonian systems. Ydstie [143] offers a recent survey of related
papers. The principles of constructing a Hamiltonian system model for process
systems can be found in [53].

The aim of this chapter is to explore the deeply rooted physical funda-
mentals of passivity-based process control that lie in thermodynamics and in
first principle modelling of process systems. Because of space limitations, we
could only aim at a brief introduction to the subject. The interested reader is
encouraged to study the references cited for more details.
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7.1 Thermodynamic Variables and the Laws of
Thermodynamics

Thermodynamics is taught to process and mechanical engineers, physicists
and chemists as a basic first year subject, yet it constitutes one of the fun-
damentals of process modelling and control. It “· · · does not predict specific
numerical values for observable quantities. Instead, thermodynamics sets lim-
its (inequalities) on permissible physical processes · · · ” [25]. Therefore, it is
essential from the viewpoint of passivity-based process control.

Thermodynamics influences control design in various ways: it determines
the number and kind of state variables in our models and provides physically
motivated storage or Lyapunov function candidates, among others.

Classical thermodynamics deals with closed systems in equilibrium or near
equilibrium, but process systems are usually open and in a transient state.
Therefore, the basic principles of nonequilibrium thermodynamics [72] are
also of interest for process control.

7.1.1 Extensive Variables, Entropy, Intensive Variables

A simple axiomatic approach to thermodynamics is to formulate the funda-
mental statements in the form of postulates and derive their consequences.
The approach taken here follows the description by Callen [25].

For the sake of simplicity, we consider the simplest case, when the consid-
ered process system consists of homogeneous closed domains of space called
simple regions.

Extensive variables

According to Postulate I of thermodynamics, the equilibrium states of a sim-
ple region are characterized completely by the internal energy U , the volume
V , and the mole numbers N1, · · · , NK of the chemical components forming
the canonical set of extensive variables:

U, V, N1, . . . , NK . (7.1)

This implies that every other extensive quantity is a function of the above set.
Note that extensive quantities are strictly additive when joining two re-

gions.

Entropy

An additional extensive variable, so-called entropy (denoted as S), is used to
characterize an equilibrium state that eventually results after the removal of
constraints in a composite system of two or more simple regions.
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Postulate II states that the values of the extensive quantities in the absence
of an internal constraint are those that maximize the entropy over the manifold
of constrained equilibrium states.

Postulate III furthermore states that entropy is extensive, continuous and
differentiable and is a monotonically increasing function of the energy.

From Postulate I and Postulate III, it follows that

S = S(U, V, N1, . . . , NK),
(

∂S

∂U

)
V,N1,...,NK

> 0. (7.2)

The above equation is called the entropic fundamental equation.
In addition to the monotonically increasing property of entropy as a func-

tion of internal energy, entropy is a concave function in any of its independent
variables, that is, for example,

S(U1, V,N1, . . . , NK) + S(U2, V,N1, . . . , NK)
2

≤ S(
U1 + U2

2
, V,N1, . . . , NK).

(7.3)
This means that the average entropy of two regions that differ only in their
internal energy is smaller than that of the same region with an average internal
energy. This is a form of Postulate II implying that the internal energy would
“equilibrate” when joining regions.

Alternatively to (7.2), we can consider energy U as an independent variable
depending on the others, giving rise to the so-called fundamental equation:

U = U(S, V, N1, . . . , NK). (7.4)

Intensive variables

Because of our interest in dynamics and in the associated changes in extensive
quantities, the differential form of the fundamental equation (7.4) is computed
in the form:

dU =
(

∂U

∂S

)
V,N1,...,NK

dS +
(

∂U

∂V

)
S,N1,...,NK

dV +
K∑

j=1

(
∂U

∂Nj

)
S,V,...,NK

dNj .

(7.5)
The various partial derivatives are called intensive quantities and are conven-
tionally denoted as follows:(

∂U
∂S

)
V,N1,...,NK

is the temperature T ,(
∂U
∂V

)
S,N1,...,NK

is the negative pressure −p and(
∂U
∂Nj

)
S,V,...,NK

is the chemical potential µj of component j.

Unlike extensive variables, intensive variables are not additive when joining
two or more regions, but they equilibrate. The significance of intensive vari-
ables is explained by the fact that they are the usual measurable quantities
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in process systems. For later use, we collect the canonical set of engineering
intensive variables for a region in a vector:

χ0 = p , χ1 = T , χj = cj−1, j = 2, . . . ,K + 1, (7.6)

where cj = Nj

V is the concentration of component j. Observe that the chemical
potential has been replaced by the concentration of the same component in
the set.

It is important to note that the set of (K + 2) intensive variables is not
independent in the sense that there exists an algebraic relationship, the so-
called Gibbs-Duhem relation among them.

Entropic intensive variables

If, instead of considering the fundamental equation in its energy form (see
(7.5)), we consider the entropy S as dependent, we can arrive at the entropic
intensive variables. The infinitesimal variation form of the so-called entropic
fundamental equation (7.2),

S = S(U, V,N1, . . . , NK) = S(X0, X1, . . . , XK+1), (7.7)

is written in the form:

dS =
K+1∑
j=0

∂S

∂Xj
dXj , (7.8)

where the canonical set of extensive variables has also been collected in a
vector:

X0 = V , X1 = U , Xj = Nj−1, j = 2, . . . ,K + 1. (7.9)

Then the entropic intensive variables Aj ,

Aj =
∂S

∂Xj
, (7.10)

are
A0 =

p

T
, A1 =

1
T

, Aj = −µj−1

T
, j = 2, . . . ,K + 1. (7.11)

The entropic intensive variables are also called thermodynamic driving forces.

Thermodynamic equations of state

Temperature, pressure and chemical potentials are partial derivatives and are
also functions of the canonical set of extensive variables (S, V,N1, . . . , NK):

T = T (S, V,N1, . . . , NK),
p = p(S, V,N1, . . . , NK), (7.12)

µj = µj(S, V,N1, . . . , NK).
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Such relationships are called thermodynamic equations of state.
The well-known ideal gas equation that holds for a closed single component

region in the form:
p

T
= R ·N · V, (7.13)

where R is the universal gas constant, is a simple example of a state equation
in the entropy representation.

Euler equation

The fundamental equation (7.4) relates the canonical extensive variables of
a system that are all additive when joining regions. Because the internal en-
ergy as its dependent variable is also additive, the fundamental equation is a
homogeneous first-order equation:

U(λS, λV, λN1, . . . , λNK) = λU(S, V,N1, . . . , NK), (7.14)

where λ is an arbitrary positive scalar scaling factor. The homogeneous first-
order property of the fundamental equation permits it to be written in a
particularly convenient form, called the Euler form:

U = TS − pV + µ1N1 + . . . + µkNK . (7.15)

In entropy representation, the Euler relation takes the form:

S =
(

1
T

)
U +

( p

T

)
V −

K∑
j=1

(µj

T

)
Nj. (7.16)

7.1.2 Laws of Thermodynamics

Some of the postulates described in Section 7.1.1 are so important that they
deserved the name of “law.”

The first (energy conservation) law

Recall that the laws of thermodynamics are postulated for closed systems in
equilibrium; therefore, no mass or component mass exchange is considered
between the system and its environment. Because thermodynamics was origi-
nally concerned with the equilibrium conditions of constrained closed systems
when the constraints are removed, it was natural to postulate the general
mass and energy conservation laws as the first law of thermodynamics.

For open systems the conservation law of mass, energy and momentum still
hold, and one takes them into account in the form of dynamic conservation
balances. These constitute the basis of dynamic modelling of process systems,
giving rise to the state equations derived from Section 7.2.
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The second (entropy) law

Postulate II described in Section 7.1.1 is also called the second (entropy) law
of thermodynamics. It has been formulated in various forms over the centuries
starting from the impossibility of a perpetuum mobile of the second kind to
its rather mathematical form originating from statistical thermodynamics.

Its importance from the viewpoint of passivity-based process control lies
in the fact that there exists an extensive quantity, the entropy, whose increase
determines the direction of the changes over the permissible states permitted by
the first law. This approach suggests a search for a relation between the notions
of storage function and entropy that is discussed in detail in Section 7.3.

7.1.3 Nonequilibrium Thermodynamics

The classical theory of nonequilibrium thermodynamics (see [43] or [72], for
instance) is developed to cover cases when a thermodynamic system evolves
in a neighbourhood of its equilibrium point to describe the local processes
taking place when moving toward equilibrium. Thus it is an inherently local
approach that uses linearised relationships. It is out of the scope of this chapter
to give even a brief summary of nonequilibrium thermodynamics; only those
facets will be briefly recalled that are used to construct a thermodynamically
motivated model suitable for passivity-based process control.

Local thermodynamic equilibrium is assumed everywhere in each region. The
assumption is standard in the theory of irreversible thermodynamics, and the
range of validity covers most of the operating conditions met in practice. It
simply states the validity of the entropy form of the Euler equation (7.16) for
open systems out of equilibrium.

Onsager relation

The Onsager relation gives the transfer rate Rtransfer of conserved extensive
quantities as a function of the related thermodynamic driving forces ([72]):

dX
dt

= Rtransfer = L q, (7.17)

where the matrix L is positive definite and symmetrical, X is a vector of canon-
ical extensive quantities (7.9) and q is the vector of centred thermodynamic
driving force variables :

qj = Aj −A∗
j , j = 0, 1, . . . ,K + 1, (7.18)

with the entropic intensive variable vector A in (7.11) and the superscript ∗
denoting equilibrium value.
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Relationship between thermodynamic variables

In addition to the above, there is a linear static (i.e., time invariant) relation-
ship between the extensive variables and their thermodynamic driving force
variables in the form ([52]):

q = Q(X −X∗). (7.19)

The coefficient matrix Q in the above equation is the Hessian of the entropy
S with respect to the extensive variables Xj with elements:

Qk� = ∂2S
∂Xk ∂X�

< 0 k,  = 0, . . . ,K + 1. (7.20)

The concavity of entropy (see (7.3)) implies that its Hessian with respect to
Xj is negative definite; thus Q is negative definite.

From homogeneity, (7.16) can be written in differential form as follows:

dS =
(

1
T

)
dU +

( p

T

)
dV −

K∑
k=1

(µk

T

)
dNk, (7.21)

where the operator d stands for total derivative. The explicit form of the
Hessian (7.20) is obtained by applying the total derivative d to (7.21) resulting
in the following matrix:

Q =

⎡⎢⎢⎢⎢⎣
− 1

CV NT 2 0 0 · · · 0
0 1

T pV 0 · · · 0
0 0 −µ11

T · · · −µ1K

T
0 0 · · · · · · · · ·
0 0 −µK1

T · · · −µKK

T

⎤⎥⎥⎥⎥⎦ , (7.22)

where
CV = 1

N

(
∂U
∂T

)
, pV =

(
∂p
∂V

)
, µjk =

(
∂µj

∂ck

)
and N =

∑K
k=1 Nk is the total number of moles.

7.2 The Structure of State Equations of Process Systems

Dynamic system models applied to process control differ substantially from
models used in other control fields, such as mechanical, transport, etc. Their
special nature is explained by the fact that dynamic models of process systems
usually originate from dynamic conservation balances for extensive conserved
quantities coupled with suitable algebraic constitutive equations of mixed ori-
gin. Some of the constitutive equations describe thermodynamic relations such
as state equations and thermodynamic property relations.
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To explore the implications of the laws of thermodynamics and other pro-
cess engineering fields, such as reaction kinetics, unit operations etc., for the
structure of the state equation, the standard seven step modelling procedure
[55] will be used that identifies the key steps in process modelling. The main
idea behind this procedure is that process models are constructed for a given
modelling goal that has implications for the required precision, type of model
and mechanisms to be described. The first step in the modelling procedure
is to identify the modelling goal clearly together with the boundaries and
elements of the process system to be modelled. Thereafter, the mechanisms
needed to describe the system are collected in step 2, followed by the review
and evaluation of the data available for the model building in step 3. Only
then, during step 4, the model equations are constructed, following again a
sequence of structured substeps, that starts by identifying all of the balance
volumes and then constructing the conservation balances supplemented with
algebraic constitutive equations.

If one aims at developing a model for control purposes, a lumped (con-
centrated parameter) dynamic model is needed, that is of minimal order (i.e.,
contains a minimum number of state variables) and provides moderate ac-
curacy. Therefore, we restrict our attention to the case of lumped parameter
dynamic process models.

The material covered here is mainly taken from the book by Hangos and
Cameron [55].

7.2.1 State Variables and Order of Systems

The first step in developing a dynamic model of a lumped process system is to
identify its balance volumes: They are (quasi-)homogeneous regions that can
be regarded perfectly mixed, and they serve as regions over which dynamic
conservation balances are constructed. Let R be the number of such regions
which may be open to the environment and to each other.

As we have seen before in Section 7.1.1, the thermodynamic state of any
simple region is unambiguously characterized by the canonical set of extensive
variables U, V, N1, . . . , NK . Dynamic conservation balances are constructed
for the conserved extensive variables that are the internal energy U , the over-
all mass m and the component masses m1, . . . ,mK for a region of lumped
parameter process systems (momentum balances occur very rarely, see [55]
for a few examples). If one compares the above two sets, it turns out that

• U is present in both sets;
• the component masses mk can easily be computed from the mole numbers

Nk (that are not conserved) as mk = NkMk where Mk is the molecular
weight;

• the total mass is linearly dependent on the component masses as

m =
K∑

j=1

mj =
K∑

j=1

NjMj . (7.23)
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Thus we have (K +1) linearly independent conserved extensive quantities for
which balances can be constructed. Their canonical set is usually considered
the vector Xe:

Xe
0 = m, Xe

1 = U, Xe
j = mj−1, j = 2, . . . ,K. (7.24)

As we shall see later in the next subsection, dynamic conservation balances
give rise to the state equations. Therefore, the order of the system is R(K + 1),
equal to the number of state variables, if all components are present in each
region. The same argument implies that the set of state variables would be
the union of the canonical sets of conserved extensive variables of all regions.
Because of the difficulties in measuring these variables directly, a related set of
engineering intensive variables is used instead that are related to the conserved
extensive quantities through extensive-intensive relationships, a category of
constitutive equations (see Section 7.2.3).

7.2.2 Conservation Balances and Mechanisms

Conservation balances form the differential (prestate) equation part of any
process model. These balances are constructed for the conserved extensive
variables in each region. The terms in conservation balance equations are
related to mechanisms taking place in the system.

The basic equation which drives all the other conservation balances is the
overall mass balance of a perfectly stirred balance volume:

dm
dt

= vin − vout, (7.25)

where vin and vout are the mass inflow and outflow rates, respectively.
A conservation balance equation for another (than overall mass) conserved

extensive quantity Xe
i in a perfectly stirred balance volume takes the form

dXe
i

dt
= vinχ

e
i,in − voutχ

e
i + Ri,transfer + Ri,source, (7.26)

where Ri,transfer is the so-called transfer and Ri,source is the source term. The
variable χe

i denotes the mass-specific intensive pair of the conserved extensive
variable Xe

i :

χe
i =

Xe
i

m
, (7.27)

where Xe
i can be any element of the vector (7.24) but not the overall mass.

It is important to notice that the general conservation balance equation
(7.26) has four terms on its right-hand side corresponding to the four principal
mechanisms we take into account when constructing concentrated parameter
process models:

• input convection (inflow term, vinχ
e
i,in);

• output convection (outflow term, voutχ
e
i );

• (interphase) transfer Ri,transfer ; and
• sources including both generation and consumption Ri,source.
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7.2.3 Constitutive Equations

Because of the dependence of the transfer and source terms on intensive vari-
ables, one usually needs additional algebraic relationships to complete a pro-
cess model that has been constructed from dynamic conservation balances.
These algebraic relationships are called constitutive equations that are cate-
gorized according to their thermodynamic meaning as follows.

1. Extensive-intensive relationships
As we have already seen in Section 7.1.3, an algebraic relationship exists in
the form of (7.19) between the thermodynamic extensive variables Xj , j =
1, . . . ,K+1 and their intensive thermodynamic potential variables Aj , j =
1, . . . ,K+1 that is local and linear in the neighbourhood of the equilibrium
point. From this, one can derive approximate linear relationships between
the conserved extensive variables Xe

j , j = 1, . . . ,K+1 and their intensive
engineering counterparts χe

j , j = 1, . . . ,K + 1 by neglecting cross-effects
as follows:

Xe
1 = U = CP mT, (7.28)

Xe
j = mj−1 = cj−1m , j = 2, . . . ,K + 1, (7.29)

where CP is the specific heat, cj is the concentration of the jth component,
and m is the total mass.

2. Transfer rate equations
Transfer in lumped systems is the transport of conserved extensive quan-
tities through a phase boundary driven by the difference in their inten-
sive (engineering) counterparts. The thermodynamic origin of transfer is
the Onsager relationship (see (7.17) in Section 7.1.3) that determines the
transfer rate of extensive thermodynamic variables as a linear function
of the related thermodynamic driving forces with a positive definite sym-
metrical matrix L. The Onsager relationship can be applied to derive the
engineering version of the transfer rate equations by using local linearisa-
tion and neglecting cross-effects. The engineering transfer rate relationship
of a conserved extensive quantity Xe

i is in the general linear form:

Ri,transfer = KtransferFtransfer(χ
(�)
i − χi) (7.30)

where Ktransfer is the transfer rate coefficient (a constant), Ftransfer is
the area of the transfer interphase surface, χ(�)

i is the related engineering
driving force variable of the other balance volume and χi is that of the
actual balance volume over which the conservation balance is constructed.

3. Source equations
The source term in the conservation balance equations is usually highly

nonlinear and relates the source of a conserved extensive quantity Xi to
the intensive engineering variables (not necessarily only to its related one).
The most common source term is the reaction rate expression in the form
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Ri,sourceReact = V · k0 exp
(

E

RT

)K+1∏
k=2

cνik

k , (7.31)

where k0 is the preexponential factor, E is the activation energy, R is the
universal gas constant and νik is the stoichiometric coefficient of compo-
nent k in the ith reaction.

4. Thermodynamic state equations
As we have seen before in Section 7.1.1, the thermodynamic state equation
relates some of the intensive variables to the set of canonical extensive
variables. In process modelling, state equations occur mainly for balance
volumes containing gas phase material.

5. Physicochemical property relations
In the general case, all physicochemical properties, such as densities,

heat capacities, reaction enthalpies, transfer rates, etc., are or may be
functions of the canonical intensive variables. However, this dependency
is most often neglected by assuming constant physicochemical properties.

It is important to note that a complete lumped process model contains the
conservation balances as differential equations (with their initial values) and
the algebraic constitutive equations. Therefore, it is a differential-algebraic
(DAE) model. Its differential index [55] characterizes the difficulties related
to its solution. It can be shown, however, that under the constant physico-
chemical property assumption, the resulting process model has index 1, i.e.,
it falls into the easily solvable category.

7.2.4 State Equations of Process Systems

If one wants to design a controller for a process described by a system model,
the above DAE system model should first be transformed to a standard state
equation in the form,

dx
dt

= f̃(x, u), (7.32)

where x is the state and u is the input variable vector.
The first step in obtaining a state-space model consists of deriving the

intensive form of the conservation balance equations constructed for the con-
served extensive quantities Xe

i to obtain differential equations for the measur-
able related intensive variable χi in the same balance volume with overall mass
m. For this purpose, the extensive-intensive relationships in (7.28)–(7.29) are
used that are in the form,

Xi = Kimχi, (7.33)

where Ki is a constant. If one differentiates the above equation with respect
to time, then,

dXi

dt
= Kim

dχi

dt
+ Kiχi

dm
dt

(7.34)
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and the factor dm
dt in the last term can be substituted in this expression

from the mass balance for the same balance volume. Used in this way, the
differential variables of the transformed process model are in their intensive
form that consists of the following variables for a balance volume:

x = [m, T, c1, . . . , cK ]T , (7.35)

that form the state vector partition belonging to the balance volume.
Thereafter, one has to substitute the algebraic equations in the differential

ones, if it is possible. This can always be done if the constant physicochemical
property assumption holds and there are no balance equations with gas phase
material.

If, in addition, the input variables are chosen in a usual way to have inlet
flow rates or intensive variables at the inlets, then the state equation will be
in an input-affine form as in (2.32):

ẋ = f(x) + g(x)u. (7.36)

Then one can decompose the nonlinear vector-vector functions f(x) and g(x)
in the nonlinear state equation in its input-affine form into structurally dif-
ferent additive parts with clear engineering meaning as follows:

ẋ = Atransferx + Rsource(x) + Cconv(u)x + Bconvu, (7.37)

where Cconv(u) is a linear function. The first term in the above equation
originates from the transfer, the second from the sources, while the last two
correspond to the output and input convection, respectively. The coefficient
matrix Atransfer is a constant matrix computed from the matrices L in (7.17)
and Q in (7.22). The nonlinear source function Rsource(x) is of block diagonal
form, where the blocks along the state variables belong to the same balance
volume.

Thus the decomposed state equation contains a linear state term for the
transfer, a general nonlinear state term for the sources, a bilinear or linear
input term for the output convection and a linear input convection, respec-
tively.

7.2.5 Implications in Process Control

As a conclusion of the above, one can say that thermodynamics plays a fun-
damental role in process control by determining the following structural prop-
erties of the state equation of lumped dynamic process models:

• the order of the system is equal to the number of conserved extensive
variables multiplied by the number of balance equations,

• the set of state variables that is either the set of conserved extensive vari-
ables (extensive form) or the set of their associated engineering intensive
pairs,



7.2 The Structure of State Equations of Process Systems 205

T
ci

T
ho

T
hi

T
co

T
3c

T
2c

T
nc

T
1h

T
2h

T (n -1 )h...

...

n 2 1
T
ho

T
hi

T
co

T
ci

(a) (b)

vc

vh

vc

vh

Fig. 7.1. A cascade model of a heat exchanger

• the number and type of the terms in the state equations determined by the
considered mechanisms, and

• nonlinearities in the state equations.

7.2.6 Heat Exchanger Example

As their name suggests, heat exchangers are used for energy exchange between
at least two fluid phase (gas or liquid) streams, a hot and a cold stream. Heat
exchangers are usually distributed parameter process systems, but we can
build approximate lumped parameter models of them using finite difference
approximations of their spatial variables (as in the method of lines approxima-
tion scheme [55]). A heat exchanger can then be seen as a composite lumped
parameter process system consisting of elementary dynamic units, called heat
exchanger cells, as depicted in Figure 7.1.

A linear and a nonlinear simple dynamic model of a heat exchanger cell, a
single tube-in-shell heat exchanger has already been introduced in Section 2.7.
Here we revisit this model and illustrate the principles of physically motivated
modelling and passivity-based control using this example.

Engineering model and its variables

From the modelling point of view, a heat exchanger cell consists of two per-
fectly stirred (lumped) balance volumes (called lumps) connected by a heat
conducting wall. One of the lumps is called the hot (h) side and the other one
is the cold (c) side. The lumps with their variables are shown in Figure 7.1a
(or before in Figure 2.8 of Section 2.7).

We assume constant overall mass, constant physicochemical properties and
a single component in both balance volumes. The constant overall mass as-
sumption implies that both the inlet and outlet mass flow rates are equal for
each balance volume.

Therefore, only dynamic energy conservation balances should be con-
structed for this system with input and output convection and a transfer
term but no source term in the following form:
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dUc(t)
dt

= vc(t)cPc [Tci(t) − Tc(t)] + KTF [Th(t) − Tc(t)] , (7.38)

dUh(t)
dt

= vh(t)cPh [Thi(t) − Th(t)] + KTF [Tc(t) − Th(t)] , (7.39)

where v• is the mass flow rate, T•i is the inlet temperature, F is the heat
transfer area and KT is the heat transfer coefficient of the lump • ∈ {h, c, }.

The constitutive equations include the engineering energy transfer term:

Rtransfer = KTF [Th(t) − Tc(t)] , (7.40)

that has already been substituted into (7.38)–(7.39). The engineering form of
extensive-intensive relationship,

U• = cP•m•T•, (7.41)

with • ∈ {h, c, } accompanies the equations that can be used to develop the
intensive form of the balance equations.

The thermodynamic model variables are as follows. The vectors of con-
served extensive variables and their related intensive pairs are

Xe = [ Uc, Uh ]T , x = [ Tc, Th ]T , (7.42)

while the thermodynamic driving force vector is

Ae =
[

1
Tc

,
1
Th

]T

. (7.43)

Thus the negative definite coefficient matrix in the extensive-intensive rela-
tionship,

Ae −Ae∗ = q = Q (Xe −Xe∗) , (7.44)

is in the form,

Q =

[
− 1

cP cmc(T∗)2 0
0 − 1

cPhmh(T∗)2

]
, (7.45)

with an equilibrium reference temperature T ∗. The above equation implies a
relationship between the temperatures and the thermodynamic driving force
variables together with (7.41):

T• − T ∗ = −T ∗2
(

1
T•

− 1
T ∗

)
, • ∈ {h, c, }. (7.46)

State-space model and system variables

With our modelling assumptions, the intensive form of of the conservation
balances is obtained by substituting the extensive-intensive relationship (7.41)
in the energy conservation balances:
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dTc

dt
=

vc

mc
(Tci − Tc) +

KT

cPcmc
F (Th − Tc), (7.47)

dTh

dt
=

vh

mh
(Thi − Th) +

KT

cPhmh
F (Tc − Th). (7.48)

The above equations serve as the state equations where the state and possible
input or disturbance variable vectors are as follows:

x = [ Tc, Th ]T , u = [ vc, vh, Tci, Thi ]T . (7.49)

7.3 Physically Motivated Supply Rates and Storage
Functions

To focus on the thermodynamic background of passivity-based process control,
we restrict ourselves to a simple class of lumped parameter (finite dimensional)
process systems that obey the following basic modelling assumptions:

1. perfectly stirred (lumped) balance volumes,
2. constant physicochemical properties, and
3. constant pressure.

Note that the last two assumptions are related and they ensure a simple
form of the convection term in the conservation balance equations. With the
second and third assumptions, the algebraic constitutive equations can always
be substituted in the conservation balances.

7.3.1 Entropy-based Storage Functions

First the notion of the storage function of passive systems introduced in Sec-
tion 2.1 is repeated here for convenience. A scalar function S of the state
variables x is called a storage function if

S(x(t)) ≤ S(x(0)) +
∫ t

0

uT (s)y(s)ds, (7.50)

with S(x) ≥ 0 if x �= 0 and S(x) = 0 if x = 0. Here the number of system
inputs should be equal to the number of system outputs, i.e., dimu = dim y,
and the scalar time-dependent quantity w(u, y) = uT y is called the supply
rate.

Now let us briefly recall the most important elements of the thermo-
dynamic description of process systems relevant to the construction of an
entropy-based storage function.

1. The state of a balance volume is characterized by the canonical set of
conserved extensive variables Xe = [U, (mj , j = 1, . . . ,K)], with
m =

∑K
j=1 mj .
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2. There exists a concave entropy function S(Xe).
3. S(Xe) is homogeneous of degree one, i.e., S(λXe) = λS(Xe).
4. There exists a conserved extensive quantity Xe

i (usually the internal en-
ergy U) for which ∂S

∂Xe
i

> 0.

We have also associated entropic intensive variables or driving forces Ae
i with

each of the conserved extensive quantities through the defining equation:

Ae
i =

∂S

∂Xe
i

, Ae =
[

1
T

, (−µj

T
, j = 1, . . . ,K)

]
. (7.51)

Defining equations

With the above properties the scalar function,

Se(Xe) = −S+S∗+A∗T (Xe −Xe∗) = − (Ae −Ae∗)T Xe = −qTXe, (7.52)

is a natural storage function candidate, where S∗ is the entropy in an equi-
librium state and q is the centred version of the entropic intensive variables
Ae above. The last equality holds as a consequence of the linear static rela-
tionship (7.19) between the conserved extensive variables and their related
intensive potential variables.

One can generalize the above storage function construction as follows [64]:
First we generalize the storage function with a state dependent term,

s(x(t)) ≤ s(x(0)) +
∫ t

0

uT (s)y(s)ds − ε0

∫ t

0

xT (s)x(s)ds, (7.53)

where ε0 > 0 is a scalar constant and w(u, y, x) = uT y − ε0x
T x is the gener-

alized supply rate. Note that the generalized entropy-based storage function
s can be obtained from the original one by adding a positive definite term to
it, i.e.,

s(x(t)) = S(x(t)) + ε0

∫ t

0

xT (s)x(s)ds. (7.54)

This construction helps to prove the passivity of process systems with more
than one connected balance volume, i.e., of process networks [64].

Consider a state evolution (a solution of the system model) (Xe1, Ae1) and
another evolution (Xe2, Ae2). Then the scalar function,

se(Xe1, Xe2) = (Xe1 −Xe2)T
(
Ae2(Xe2) −Ae1(Xe1)

)
, (7.55)

is a generalized version of the function Se of type (7.53), where Xe1 = X∗e is
an equilibrium constant reference. Defining deviation variables,

Xe =
[
Xe1

Xe2

]
, Ae =

[
Ae1 −Ae2

Ae2 −Ae1

]
, (7.56)
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(7.55) can be rewritten as

se(Xe) = −AeT
Xe. (7.57)

In the case of R balance volumes, one can simply sum the storage functions
corresponding to the individual balance volumes, such that

Se =
R∑

j=1

Se(j), (7.58)

where Se(j) is the storage function of the jth balance volume.

Properties

First we check if both the simple entropy-based storage function candidate
Se in (7.52) and its generalized version se in (7.57) possesses the required
positivity properties, i.e., S(ξ) > 0 if |ξ| �= 0 and S(ξ) = 0 if |ξ| = 0.

The definition given in (7.52) implies the required properties if the inde-
pendent variable is chosen as the centred engineering conserved variables, i.e.,
ξ = Xe −Xe∗.

• At the equilibrium point ξ = 0,

Se(0) = Se(Xe∗) = −S∗ + S∗ + A∗T (Xe∗ −Xe∗) = 0. (7.59)

• Outside equilibrium, when |ξ| �= 0, one can approximate the entropy with
its Taylor series expansion around the equilibrium value:

S(ξ) = S∗ + A∗T ξ + (higher order terms), (7.60)

where the higher order terms are negative because of the concavity of
entropy. This implies that the storage function candidate Se = S∗ +A∗T ξ
is positive when the system is not at equilibrium.

Thus the properties of entropy guarantee that the storage function candidates
are convex functions of their independent variables and take their minimal
value of zero at the equilibrium state or at the reference solution.

The entropy-like definition of the storage function candidate Se enables
us to connect the state-space model equations to the defining property of the
storage function in the form,

dSe

dt
≤ uT y, (7.61)

that will help us to identify system inputs and outputs for which the process
system is passive. If one differentiates (7.52) with respect to time, the following
form is obtained:
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dSe

dt
= −qT dXe

dt
, (7.62)

taking into account the homogeneity of the entropy function. The time deriva-
tive dXe

dt connects the time derivative of the storage function to the conserva-
tion balance equations or state equations in their extensive form thus enabling
the substitution of the right-hand side of the conservation balances contain-
ing the input variables in (7.62). Therefore, the check of the defining property
(7.61) can be easily performed by using (7.62).

7.3.2 Possible Choices of Inputs and Outputs

If one wants to select suitable inputs and outputs for a given process sys-
tem such that it becomes passive with respect to the entropy-based storage
function candidate Se, then the following constraints should be respected:

1. dimu = dim y to have a scalar supply rate w(u, y) = uT y, and
2. the unit of the supply rate w should be J

sec·K .

More insight can be gained if one compares the right-hand sides of the
inequality (7.61) and the equality (7.62) for dSe

dt . It suggests the use of a scaled
version of centred driving force variables q = Ae−A∗e as output, and the scaled
version of the inlet flow of the corresponding conserved extensive quantity
vinχ

e
in (see (7.26)) or its centred version as its pair; then dim x = dimu. In

the simplest case, it means that the intensive engineering variables at the inlet
of the system χe

in are selected as input variables and the inlet mass flow rates
are kept constant. Then the outputs are assumed to be y = Ae, where Ae

is the set of engineering driving force variables that can be re-scaled to have
either the set of conserved extensive quantities or their related engineering
intensive variables.

7.3.3 Storage Function of the Heat Exchanger Example

We have already constructed the engineering model of the simple heat ex-
changer cell example in Section 7.2.6, that will be augmented here with an
entropy-based storage function.

Entropy-based storage function

A joint equilibrium reference temperature T ∗ for both balance volumes is
used for the construction to have a special case of the entropy-based storage
function Se in (7.52):

Se(Uc, Uh) =
∑

j=c,h

−Sj + S∗
j +

1
T ∗
(
Uj − U∗

j

)
= −

∑
j=c,h

(
1
Tj

− 1
T ∗

)
Uj .

(7.63)
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Its differential form is

dSe

dt
= −

∑
j=c,h

(
1
Tj

− 1
T ∗

)
dUj

dt
, (7.64)

where one can directly substitute the right-hand side of the conservation bal-
ances (7.38)–(7.39).

Input and output variables and passivity

Following the recommendations in Section 7.3.2, the hot and cold inlet tem-
peratures Tci and Thi are selected as physical input variables giving rise to
the following input and output vectors:

u = [ κc · Tci, κh · Thi ]T , y =
[

1
Tc

− 1
T ∗ ,

1
Th

− 1
T ∗

]T

, (7.65)

where κc = cPcvc and κh = cPhvh are constants.
With the above choice, one can show the passivity of the heat exchanger

cell with respect to the input and output variables in (7.65) using the differen-
tial form of the entropy-based storage function (7.64). First, we form vectors
from the centred state variables and their centred driving force variables by
observing that

T =
[
Tc − T ∗

Th − T ∗

]
, (7.66)

y = q =
[ 1

Tc
− 1

T∗
1

Th
− 1

T∗

]
= − 1

T ∗2

[
Tc − T ∗

Th − T ∗

]
= − 1

T ∗2T . (7.67)

Note that the above relationship between the centred driving force variable yc

(or yh) and its corresponding centred state variable T c (or Th) is obtained by
expanding the function f(T ) = 1/T into a Taylor series around the equilibrium
point T ∗ and considering a linear approximation in the form,

f(T ) ∼= 1
T ∗ − 1

T ∗2 (T − T ∗). (7.68)

By substituting the right-hand side of the conservation balances (7.38)–(7.39)
in the differential form, the following equation is obtained:

dSe

dt
=

1
T ∗2T

T dXe

dt

=
1

T ∗2T
T
[−KTF KTF

KTF −KTF

]
T +

1
T ∗2T

T
[−vccPc 0

0 −vhcPh

]
T + yTu.

(7.69)

The first and second terms on the right-hand side of the above equation orig-
inate from the transfer and output convection terms, respectively, and they



212 7 Process Control Based on Physically Inherent Passivity

are both nonpositive and negative, respectively, being quadratic forms with
negative (semi)definite matrices. This implies that

dSe

dt
< yTu (7.70)

in this case, that is, the simple heat exchanger cell is passive with respect to
the input and output variables (7.65).

7.4 Hamiltonian Process Models

The notion of Hamiltonian systems (see e.g., [130]) has been abstracted from
the principles of theoretical mechanics where it has become clear that the
underlying physics determines a special nonlinear structure that can be used
effectively in nonlinear systems and control theory. The notions and notations
used in this section are based on the book by van der Schaft [130].

7.4.1 System Structure and Variables

The so-called Hamiltonian control systems have the form,

q̇ =
∂HT

∂p
(q, p), (7.71)

ṗ = −∂HT

∂q
(q, p) + B(q)u, (7.72)

y = BT (q)
∂HT

∂p
(q, p), (7.73)

where q ∈ Rk are the generalized configuration coordinates, p ∈ Rk are the
generalized momenta, u ∈ R

m is the input, B(q) ∈ R
k×m is the input force

matrix and H : R2k �→ R is the Hamiltonian function. If m < k, then the
system (7.71)–(7.73) is called underactuated, while with k = m and B(q)
invertible everywhere, it is called fully actuated. The coordinates q and p are
often called states and costates of the system, respectively.

In classical mechanics, B(q)u is the vector of generalized forces acting on
the system, while H , the total energy of the system, is given by

H(q, p) =
1
2
pTM−1(q)p + V (q), (7.74)

where M(q) is a k×k inertia (or generalized mass) matrix which is symmetrical
and positive definite. The first term on the right-hand side of (7.74) is the
kinetic energy while the second term V denotes the potential energy. Using
the relation p = M(q)q̇, the Hamiltonian function can also be written as
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H(q, p) =
1
2
q̇TM(q)q̇ + V (q). (7.75)

Taking the time derivative of the Hamiltonian function gives:

Ḣ =
∂H

∂q
(q, p)q̇ +

∂H

∂p
(q, p)ṗ

=
∂H

∂p
(q, p)

(
−∂HT

∂q
(q, p) + B(q)u

)
+

∂H

∂q
(q, p)

∂HT

∂p
(q, p)

=
∂H

∂p
(q, p)B(q)u = yTu. (7.76)

It can be seen from (7.76) that H is a conserved quantity (first integral) for
u = 0. For arbitrary u, the system is lossless (see Definition 2.8) with the
output defined in (7.73) and storage function H . If the geometry of H is
appropriate, then it can be used as a Lyapunov function for the open-loop
system or as a control Lyapunov function when designing a feedback control
system that makes H strictly decreasing.

7.4.2 Generalized Hamiltonian Systems

Observe that the number of state variables of Hamiltonian control systems is
always even. This can make finding the Hamiltonian representation of non-
mechanical systems difficult. A generalized version of (7.71)–(7.73) that pre-
serves the most important control related dynamical properties can be given
in the form,

ẋ = J(x)
∂HT

∂x
(x) + g(x)u, (7.77)

y = gT (x)
∂HT

∂x
(x), (7.78)

where x ∈ Rn is the state vector, H : Rn �→ R is the Hamiltonian function,
u, y ∈ Rm are the input and output vectors, respectively, g(x) ∈ Rn×m, and
J(x) is an n × n skew symmetrical (i.e., J(x) = −J(x)T ) matrix smoothly
depending on x.

The time derivative of H now reads:

Ḣ =
∂H

∂x
(x) · ẋ

=
∂H

∂x
(x)J(x)

∂HT

∂x
(x) +

∂H

∂x
(x)g(x)u.

(7.79)

From the skew-symmetry of J , it follows that

Ḣ =
∂H

∂x
(x)g(x)u = yTu, (7.80)

which means that (7.77)–(7.78) are also lossless with storage function H .
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7.4.3 Generalized Hamiltonian Systems with Dissipation

The above defined Hamiltonian and generalized Hamiltonian systems are both
lossless (which is a rather small system class from a practical point of view),
while it is known that the majority of real process systems are dissipative
in nature. To transform the generalized Hamiltonian systems into possibly
dissipative systems, let us define the following linear partial feedback:

uR = −KyR, (7.81)

where K is a positive semidefinite symmetrical matrix and

u =
[
u0

uR

]
, g(x) =

[
g0(x) gR(x)

]
, (7.82)

y =
[
y0

yR

]
=

[
gT
0 (x)∂HT

∂x (x)
gT

R(x)∂HT

∂x (x)

]
. (7.83)

The closed-loop system is described by the equations

ẋ = [J(x) −R(x)]
∂HT

∂x
(x) + g0(x)u0, (7.84)

y0 = gT
0 (x)

∂HT

∂x
(x), (7.85)

where
R(x) = gR(x)KgT

R(x) (7.86)

is a positive semidefinite symmetrical matrix, called the dissipation matrix. It
is important to note that any real square matrix W can be decomposed as a
sum of a skew-symmetrical and a symmetrical matrix:

W =
1
2
(
W −WT

)
+

1
2
(
W + WT

)
. (7.87)

Taking the time derivative of H along the solutions of (7.84) and (7.85) gives

Ḣ = yT
0 u0 − ∂HT

∂x
(x)R(x)

∂H

∂x
(x) ≤ yT

0 u0, (7.88)

which shows that the system represented by (7.84) and (7.85) is passive.
Note that for system equations written in original physical coordinates,

J(x) often reflects the system’s energy preserving internal interconnection
structure, while R(x) is related to an additional resistive structure. The gen-
eralized Hamiltonian structure (with dissipation) has been identified in many
kinds of physical systems such as electric circuits [82], electromechanical sys-
tems [90], etc.
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7.4.4 Hamiltonian Description of the Heat Exchanger Example

Linear model

Consider the linear heat exchanger model and the storage function S described
in Section 2.7. Let us use S as the Hamiltonian function, i.e., H = S. The
gradient of H is written as

∂H

∂x
(x) =

[
1
k1

x1
1
k2

x2

]
. (7.89)

Let us introduce the following notation:

M(x) = J(x) −R(x). (7.90)

It is easy to see that the generalized Hamiltonian form of (2.121) can be
constructed as

ẋ = M(x) · ∂H
T

∂x
(x) +

[
a1 0
0 a2

]
u, (7.91)

where

M(x) =
[
k1(−a1 − k1) k1k2

k1k2 k2(−a2 − k2)

]
, (7.92)

i.e., in this case, M is a symmetrical constant matrix. To examine the deriva-
tive of H , we have to check the definiteness of M . The first minor of M is
clearly negative: M11 = k1(−a1 − k1) (recall that the parameters ai and ki

are positive). The second minor is the determinant,

det(M) = a1a2k1k2 + a1k1k
2
2 + a2k

2
1k2, (7.93)

which is positive. From this, it follows that M is negative definite, so H is
always decreasing for u = 0. Since M is symmetrical, the matrices J and R
are

J = 02×2, R = −M. (7.94)

The passive output vector of the system can be calculated as

y =
[
a1 0
0 a2

]
·
[ 1

k1
x1

1
k2

x2

]
=
[ a1

k1
x1

a2
k2

x2

]
. (7.95)

This means that the linear heat exchanger model admits a generalized dis-
sipative Hamiltonian description that exists independently of the parameter
values.
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Nonlinear model

Now, let us consider the nonlinear heat exchanger model described in (2.132).
Let us introduce the following notations:

b1 =
1
Vc

u10, b2 =
1
Vh

u20. (7.96)

We use the storage function S(x′) again as the Hamiltonian function i.e.,

H(x′) =
1
2

(
1
k1

x′2
1 +

1
k2

x′2
2

)
. (7.97)

The generalized Hamiltonian description can be written as

ẋ′ = M(x′) · ∂H
T

∂x′ (x′) + G(x′)u′, (7.98)

where

M(x′) =
[
k1(−b1 − k1) k1k2

k1k2 k2(−b2 − k2)

]
(7.99)

and

G(x′) =
[ 1

Vc
(Tci − x′

1 − x10) 0
0 1

Vh
(Thi − x′

2 − x20)

]
. (7.100)

By comparing (7.92) and (7.99), it is clear that the structure and sign con-
ditions in M(x) and M(x′) are the same. Therefore, M(x′) is also uniformly
negative definite.

However, the passive output in this case is different from the linear case
because of the difference in the input structure of the two models. The output
can now be calculated as

y′ =
[ 1

Vc
(Tci − x′

1 − x10) 0
0 1

Vh
(Thi − x′

2 − x20)

]
·
[ 1

k1
x′

1
1
k2

x′
2

]
=
[ 1

k1Vc
(Tcix

′
1 − x′2

1 − x10x
′
1)

1
k2Vh

(Thix
′
2 − x′2

2 − x20x
′
2)

]
. (7.101)

This completes the generalized Hamiltonian description of the nonlinear heat
exchanger model.

7.5 Case Study: Reaction Kinetic Systems

The (possibly complex) dynamics of a biochemical reaction network has been
a target of intensive research for decades. However, there are well-established
stability results for closed reaction kinetic systems that can be used for estab-
lishing useful passivity results. This section is based mainly on [92].
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7.5.1 System Description, Thermodynamic Variables and
State-space Model

To describe the basic structure of reaction kinetic systems, we use the notation
employed in [45].

The isolated and homogeneous isothermal systems where n chemical
species participate in an r-step reaction network, are represented by the fol-
lowing stoichiometric mechanism:

n∑
i=1

αijAi �
n∑

i=1

βijAi j = 1, . . . , r, (7.102)

where αij , βij are the constant stoichiometric coefficients for species Ai in the
reaction step j. All reactions are assumed to be reversible, and reaction rates
obey the mass action law [39]:

Wj = W+
j −W−

j = k+
j

n∏
i=1

x
αij

i − k−
j

n∏
i=1

x
βij

i , (7.103)

where k+
j and k−

j are the constants of the direct and inverse rates of the jth
reaction step, respectively, and xi ≥ 0 represents the concentration of species
Ai. Each concentration evolves in time according to the ordinary differential
equation,

ẋi =
r∑

j=1

νij(W+
j −W−

j ), (7.104)

where νij = αij − βij is positive or negative depending on whether the specie
i is a product or a reactant in the reaction j. The dynamic evolution of the
network can then be represented by a set of ordinary differential equations
which in compact matrix form is written as

ẋ = N · W (x), (7.105)

where N = [νij ] is the n× r coefficient matrix whose columns are the linearly
independent stoichiometric vectors νj = βj − αj , and W (x) ∈ R

r denotes the
vector of reaction rates.

7.5.2 The Reaction Simplex and the Structure of Equilibrium
Points

It is easy to see from the structure of (7.105) that the linearly independent
functions,

cT
k · x, k = 1, . . . ,m, (7.106)

are invariant for the dynamics of the system, where ck ∈ Rn, k = 1, . . . ,m form
a basis of ker(N T ). These invariant quantities reflect the conservation laws of
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closed kinetic networks, where the amount of each radical or chemically un-
altered component remains constant and the corresponding component mass
balances satisfy cT

k · x(t) = cT
k · x(0).

It is known that the positive orthant Rn
+ of the concentration space is

also invariant for (7.105) since the concentrations are always nonnegative.
Therefore, we can define the so-called reaction simplex (which is also invariant
for the system’s dynamics) corresponding to an initial concentration vector
x0 as the intersection of the conservation laws and the positive orthant:

Ω(x0) =
{
x ∈ R

n
+ | cT

k · x = x0

}
. (7.107)

It is shown (see [39] or [117]) that in a closed reaction network, there is a
unique equilibrium point of (7.105) on each reaction simplex which is stable
in the space of concentrations (and asymptotically stable if we restrict the
dynamics to the given reaction simplex).

7.5.3 Physically Motivated Storage Function

The second law of thermodynamics establishes an evolution criterion based on
a concave function (the entropy) which never decreases in isolated systems and
achieves its maximum at equilibrium (see the second law of thermodynamics
in Section 7.1.2). Isolated dissipative systems evolve to equilibrium through
irreversible processes that produce entropy. The rate of entropy production
is a way to quantify dissipation. In closed reaction systems, the total mass,
volume (V ) and energy (U) are constant. Therefore, the total entropy S̃ of
the system can be written in the form of the Euler equation (7.16) [25]:

S̃ =
(

1
T

)
U +

(
P

T

)
V −

n∑
i=1

(
µ̃i

T

)
Mi, (7.108)

where T is the temperature, P is the pressure and µ̃i is the chemical potential
of the ith component with component mass Mi. Assuming in addition con-
stant temperature and ideal mixtures, where the chemical potential of the ith
component is µ̃i = RT lnxi and its mass is Mi = V xi we obtain

S̃ =
(

1
T

)
U +

(
P

T

)
V − RV

T

n∑
i=1

(lnxi)xi, (7.109)

where R is the universal gas constant.
In exploring the stability of the equilibrium manifold, we follow [45] and

define an entropy-like expression which coincides with the negative of the
function,

V(x) =
n∑

i=1

xi · (lnxi − 1) =
n∑

i=1

(xi lnxi − xi) , (7.110)
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where the first term in the summand corresponds to the last term and the
second to the second one in (7.109). In addition, the right-hand side term in
(7.105) is Lipschitz continuous. This implies, as discussed in [1], that for any
arbitrary reference x1 there exists a nonnegative function Lλ(x, x1) associated
with a constant λ ≥ 0, such that the following relation holds:

[µ(x) − µ(x1)]TN ·W (x) + Lλ(x, x1)
= λ[µ(x) − µ(x1)]T (x− x1), (7.111)

where µ = ∇xV = lnx and the logarithm is taken elementwise. Systems
which, in addition, satisfy L0(x, x1) ≥ 0, are purely dissipative. Closed reac-
tion networks are a class of purely dissipative systems for a state x1 that is
the equilibrium reference. This can be easily shown by noting that for λ = 0
and x1 = x∗ in (7.111),

L0(x, x∗) = −(µ− µ∗)T
r∑

j=1

νjWj . (7.112)

Equation 7.112 can be written in terms of direct and inverse reaction rates
(7.103) as

L0(x, x∗) =
r∑

j=1

ln
W+

j

W−
j

· (W+
j −W−

j ). (7.113)

Since each term on the right-hand side of (7.113) is nonnegative, we conclude
that L0(x, x∗) ≥ 0.

To derive the stability conditions for closed reaction networks, we define
a positive definite and convex function S(x), constructed as the difference
between V(x) and its supporting hyperplane at the equilibrium reference x∗:

S(x) =
n∑

i=1

xi

(
ln

xi

x∗
i

− 1
)

+ x∗
i . (7.114)

Taking the time derivative of S along the solutions of (7.105) and using (7.111)
with λ = 0, we obtain

Ṡ = (µ− µ∗)T
r∑

j=1

νjWj = −L0(x, x∗). (7.115)

Since L0 ≥ 0 by (7.113), Ṡ ≤ 0. Consequently, S is a legitimate Lyapunov
function that ensures the structural stability of the reaction network at the
equilibrium reference.

7.5.4 Passive Input-output Structure

The state-space representation of an open reaction system, i.e., a system which
exchanges mass with its environment, is constructed by adding a set of input
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and output convection terms (see Section 7.2.2) to the closed reaction system
(7.105). To handle standard operating conditions in chemostats, we further
assume that the overall mass of the system is kept constant by having the
same input and output overall mass flow Φ. In this way, the set of ordinary
differential equations governing the evolution of states becomes

ẋ = N ·W (x) + φ(xin − x), (7.116)

where φ = Φ/V (with V as the volume of the chemostat) denotes the inverse
of the residence time and xin is the inlet concentration vector.

If the input is the inverse residence time, i.e., u = φ (a single input which
is proportional to the input/output mass flow rate), then the components of
the input affine state-space model ẋ = f(x) + g(x)u are

f(x) = N ·W (x), g(x) = xin − x. (7.117)

Now, the output can be chosen so that the system satisfies the Kalman–
Yacubovitch–Popov property:

y = h(x) = LgS(x) =
∂S

∂x
g(x)

=
[
∂S

∂x1
· · · ∂S

∂xn

]⎡⎢⎣ xin
1 − x1

...
xin

n − xn

⎤⎥⎦ ,
(7.118)

where
∂S

∂xi
= ln

(
xi

x∗
i

)
, xi > 0, i = 1, . . . , n.

Physical interpretation of the effect of input

The material throughput flow induces nondissipative contributions to the sys-
tem by adding an entropy flux term to the entropy balance. In our formalism,
this balance is obtained by computing the time derivative of S, as defined in
(7.114) along (7.116):

Ṡ = (µ− µ∗)T
r∑

j=1

νjWj + (µ− µ∗)Tφ(x0 − x). (7.119)

The second term on the right-hand side of (7.119) corresponds to the entropy
flux and may compensate for or even override the natural entropy dissipation,
thus undermining the inherent global asymptotic stability of the system. At
this point, the direct relationship between entropy flux and dynamical com-
plexity can be noted. Therefore, in stabilizing open complex reaction systems,
it seems crucial to act on the nondissipative contributions by appropriate
control configurations.
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7.5.5 Local Hamiltonian Description of Reversible Reaction
Networks

System descriptions derived from a potential form an interesting class of dy-
namic systems where powerful methods for control design, such as those based
on passivity, apply directly. In this section, we demonstrate that a complex
reaction network possesses an underlying potential structure on a state-space
that will be referred to as the reaction space.

Consider a reversible reaction network with no external input described in
(7.105). The reaction space variables are obtained by the following nonlinear
coordinate transformation:

zj = ln
pj

qj
, j = 1, . . . , r, (7.120)

where pj = W+
j and qj = W−

j are the direct and reverse rates associated with
the reaction rate. In the new variables, (7.103) becomes

Wj = pj − qj = qj(ezj − 1). (7.121)

The right-hand side of (7.112) can then be transformed through appropriate
manipulations into the form,

 (z, q) = −
r∑

j=1

zj qj(ezj − 1) = −zTW. (7.122)

Function  can be easily connected with the so-called dissipation function
because it is the product of thermodynamic fluxes (reaction rates) and ther-
modynamic forces (chemical affinities). In this way, it seems natural to explore
the properties of chemical reaction network dynamics in the reaction space de-
fined by z variables. For that purpose, let us introduce the following notations:

F (q) = diag{q1, · · · , qr}, (7.123)

S(x) = N TΓ (x)N , (7.124)

where

Γ (x) = diag
{

1
x1

, · · · , 1
xi

, · · · 1
xn

}
. (7.125)

The time derivative of zj can be calculated as

żj =
1
pj

ṗj − 1
qj

q̇j =
1
pj

∂pj

∂x
ẋ− 1

qj

∂qj

∂x
ẋ

=
[

1
x1

(α1j − β1j)
1
x2

(α2j − β2j) · · · 1
xn

(αnj − βnj)
]
ẋ.

(7.126)

This means that ż is given by:
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ż = −N TΓ (x) · ẋ = −N TΓ (x)N · W (x). (7.127)

Let us define the Hamiltonian function in the following form:

H(z) =
r∑

i=1

q∗i [exp(zi) − zi − 1] , (7.128)

where q∗i denotes the value of qi at the equilibrium point x∗. It is easy to show
that H is globally convex and bounded from below. Therefore, it can be used
as a Lyapunov function.

Using (7.121), (7.127) and (7.128), we can write

ż = −N TΓ (x)N · F (q) · [F (q∗)]−1 · ∂H
∂z

(z), (7.129)

or briefly,

ż = −G(x) · ∂H
∂z

(z), (7.130)

where
G(x) = N T Γ (x)N · F (q) · [F (q∗)]−1. (7.131)

It is easy to see that G is positive definite in the neighbourhood of the equi-
librium point, since

G(x∗) = N T Γ (x∗)N · F (q∗) · [F (q∗)]−1 = N T Γ (x∗)N . (7.132)

However, it cannot be guaranteed that G is positive definite in the whole
concentration space for an arbitrary reaction network. Therefore, we have
shown that reversible reaction networks have a local dissipative Hamiltonian
structure in transformed z coordinates (the reaction space).

Example

Consider the following elementary reaction network with three species P1, P2
and P3:

P1

k1

�
k2

P2

k3

�
k4

P3. (7.133)

Let us denote the concentrations of P1, P2 and P3 by x1, x2 and x3, respec-
tively. Then, the structure matrix N and the reaction rate vector W (x) can
be written as

N =

⎡⎣−1 0
1 −1
0 1

⎤⎦ , (7.134)

W (x) =
[
k1x1 − k2x2

k3x2 − k4x3

]
. (7.135)
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For the sake of simplicity, let us choose all reaction rate constants as 1, i.e.,
k1=k2=k3=k4=1. It is easy to calculate (using e.g., the kernel of N T ) that
the following conservation law is valid for the system:

x1(t) + x2(t) + x3(t) = x1(0) + x2(0) + x3(0) = x0, ∀ t > 0. (7.136)

Furthermore, it can be seen from W that the set of equilibrium points is
located on the following subspace:

X∗ = {x | x1 = x2 = x3} . (7.137)

The transformed z coordinates of the reaction space are computed as

z1 = ln
(

p1

q1

)
= ln

(
x1

x2

)
,

z2 = ln
(

p2

q2

)
= ln

(
x2

x3

)
.

Since q∗i = 1 for i = 1, 2, the Hamiltonian function for the system is given by

H(z) =
2∑

i=1

[ezi − zi − 1] . (7.138)

Let us choose the particular equilibrium point x∗ = [1 1 1]T from X∗ for
studying the local dissipative Hamiltonian description of the network.

The matrix G(x) is given by

G(x) =

⎡⎣x2

(
1
x1

+ 1
x2

)
−x3

x2

−1 x3

(
1
x2

+ 1
x3

)⎤⎦ . (7.139)

To study the definiteness of G, we need its symmetrized matrix which (using
the conservation law (7.136)) can be written as,

Gs(x) =
1
2
[
G(x) + GT (x)

]
=

1
2

⎡⎣ 2x2

(
1
x1

+ 1
x2

)
7 − 1 − 3−x1−x2

x2

−1 − 3−x1−x2
x2

2(3 − x1 − x2)
(

1
x2

+ 1
3−x1−x2

)⎤⎦ .
(7.140)

The value of Gs at the equilibrium point is

Gs(x∗) =
[

2 −1
−1 2

]
, (7.141)

which is clearly positive definite.
In general, the first minor of Gs is always positive, and its determinant

can be computed as
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det(Gs(x)) = − (4x2
2 + 4x1x2 − 3x1 + x2

1)(−3 + x1)
4x2

2x1
. (7.142)

It can be shown that det(Gs(x)) is positive in a wide neighbourhood of the
equilibrium point, but not in the whole concentration space. This means
that the generalized dissipative Hamiltonian description (7.129) is valid in
the neighbourhood of the equilibrium.

7.6 Summary

The thermodynamic foundations of passivity-based process control described
in this chapter include the postulates and laws of classical thermodynam-
ics, the Onsager relationship from nonequilibrium thermodynamics and the
various sets of canonical thermodynamic variables. It was shown that thermo-
dynamics has strong implications for the structure of the state equations of
process systems by determining the number and kind of state variables and
the type of nonlinearities.

A thermodynamically motivated entropy-based storage function was also
proposed that can be applied in the case of commonly chosen input and output
variables, where the input variables are the intensive variables at the inlets.

The Hamiltonian description of a process system was also introduced. It
offers another possibility of finding physically motivated storage functions for
such cases when the mass inflow/outflow rate is chosen as an input variable.
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A

Detailed Control Design Algorithms

A.1 Solution to the BMI Problem in SPR/H∞ Control
Design

The SPR/H∞ controller synthesis problem formulated in Section 3.5 requires
the solution of the following inequalities:[

I QT

Q I

]
> 0, (A.1)

Ψk + ZTQTPk + PT
k QZ < 0. (A.2)

This is a BMI problem because (A.2) has bilinear terms in two decision vari-
ables: Q and P . BMI problems are not convex and NP-hard. Here we present
an approach developed in [148, 150]. The basic idea is to start with a central
H∞ controller (Q = 0) and find a solution path that leads to SPR/H∞ con-
ditions. Because the initial central H∞ controller usually does not satisfy the
SPR condition, (A.2) is replaced by a relaxed condition:[

AT
k P + PAk PBk − CT

k

BT
k P − Ck −Dk −DT

k

]
< α

[
P 0
0 Y

]
, (A.3)

or equivalently, [
T1 T2

T3 T4

]
< 0, (A.4)

where

T1 = AT
FP + PAF + CT

2FQTBT
2FP + PB2FQC2F − αP,

T2 = PB1F + PB2FQD21F − CT
1F − CT

2F QTDT
12F ,

T3 = BT
1FP + DT

21FQTBT
2FP − C1F −D12FQC2F and

T4 = −D11F −DT
11F −D12FQD21F −DT

21FQTDT
12F − αY.
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P > 0, Y > 0 and α is a scalar decision variable. When α < 0, the relaxed con-
dition recovers to the original SPR condition. Therefore, minimizing α subject
to (A.3) leads to the SPR condition. The minimization problem is a general-
ized eigenvalue problem on P , Y and α and can be solved using semidefinite
programming (SDP) techniques. Note that minimizing [Tr(P ) + Tr(Y )] is es-
sential for the convergence of α to a local minimum [27]. Therefore, for the
given initial H∞ controller, minimizations of α and Tr(P ) + Tr(Y ) are imple-
mented alternately to get the smallest α and corresponding P and Y . P and
Y obtained are then used to find a new Q by solving another minimization
problem for α, subject to (A.4) and (A.1). Iterations continue until α < 0,
which gives a feasible solution of the SPR/H∞ control problem.

A.2 DUS H2 Control Synthesis

This algorithm was developed by the authors and their co-worker and first
published in [16].

A.2.1 Final LMI

By approximating the bilinear constraints using (5.63), and partitioning the
symmetric matrices P2 and P20 into the following forms:

P2 =

⎡⎣P211 P212 P213

PT
212 P222 P223

PT
213 PT

223 P233

⎤⎦ and P20 =

⎡⎣P2110 P2120 P2130

PT
2120 P2220 P2230

PT
2130 PT

2230 P2330

⎤⎦ . (A.5)

Problem 5.12 is converted into the following problem:

Problem A.1 ([16]).

min
δKgi,δksi,δP1,δP2,δQ

{Tr(δQ)} , (A.6)

subject to[
S δP T

1 L− δKT
gi + PT

10L−KT
gi0

LT δP1 − δKgi + LTP10 −Kgi0 0

]
≤ 0, (A.7)

ksi0 + δksi > 0, (A.8)
P10 + δP1 > 0, (A.9)⎡⎢⎢⎣

Z11 ZT
21 ZT

31 ZT
41

Z21 Z22 ZT
32 ZT

42

Z31 Z32 Z33 ZT
43

Z41 Z42 Z43 Z44

⎤⎥⎥⎦ < 0, (A.10)



A.2 DUS H2 Control Synthesis 227⎡⎢⎣P2110 + δP211 P2120 + δP212 P2130 + δP213 CT
1

P T
2120 + δP T

212 P2220 + δP222 P2230 + δP223 KT
gi0D

T
12 + δKT

giD
T
12

P T
2130 + δP T

213 P T
2230 + δP T

223 P2330 + δP233 kT
si0D

T
12 + δkT

siD
T
12

C1 D12Kgi0 + D12δKgi D12ksi0 + D12δksi Q0 + δQ

⎤⎥⎦ > 0,

(A.11)
where

S =P10E + δP1E + P10FKgi0 + P10FδKgi + δP1FKgi0 + ETPT
10

+ ET δP T
1 + KT

gi0F
T PT

10 + δKT
giF

T PT
10 + KT

gi0F
T δP T

1 , (A.12)

E =A− LC2, (A.13)
F =B2 − LD22, (A.14)

Z11 =P2110A + δP211A + P2120LC2 + δP212LC2 + P2130C2

+ δP213C2 + ATPT
2110 + AT δP T

211 + CT
2 LTPT

2120 + CT
2 LT δP T

212

+ CT
2 PT

2130 + CT
2 δP T

213, (A.15)

Z21 =KT
gi0B

T
2 PT

2110 + δKT
giB

T
2 PT

2110 + KT
gi0B

T
2 δP T

211 + AT PT
2120

+ AT δP T
212 + KT

gi0B
T
2 PT

2120 + δKT
giB

T
2 PT

2120 + KT
gi0B

T
2 δP T

212

− CT
2 LTPT

2120 − CT
2 LT δP T

212 + P2220LC2 + δP222LC2

+ PT
2120A + δP T

212A + P2230C2 + δP223C2 + KT
gi0D

T
22P

T
2130

+ δKT
giD

T
22P

T
2130 + KT

gi0D
T
22δP

T
213 (A.16)

Z22 =PT
2120B2Kgi0 + PT

2120B2δKgi + δP T
212B2Kgi0 + P2220A

+ δP222A + P2220B2Kgi0 + P2220B2δKgi + δP222B2Kgi0

− P2220LC2 − δP222LC2 + P2230D22Kgi0 + δP223D22Kgi0

+ P2230D22δKgi + KT
gi0B

T
2 P2120 + δKT

giB
T
2 P2120

+ KT
gi0B

T
2 δP212 + AT PT

2220 + AT δP T
222 + KT

gi0B
T
2 PT

2220

+ δKT
giB

T
2 PT

2220 + KT
gi0B

T
2 δP T

222 − CT
2 LTPT

2220 − CT
2 LT δP T

222

+ KT
gi0D

T
22P

T
2230 + δKT

giD
T
22P

T
2230 + KT

gi0D
T
22δP

T
223 (A.17)

Z31 =PT
2130A + δP T

213A + PT
2230LC2 + δP T

223LC2 + P2330C2

+ δP233C2 + ksi0B
T
2 PT

2110 + δksiB
T
2 PT

2110 + ksi0B
T
2 δP T

211

+ ksi0D
T
22L

TPT
2120 + δksiD

T
22L

TPT
2120 + ksi0D

T
22L

T δP T
212

+ ksi0D
T
22P

T
2130 + δksiD

T
22P

T
2130 + ksi0D

T
22δP

T
213, (A.18)
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Z32 =PT
2130B2Kgi0 + δP T

213B2Kgi0 + PT
2130B2δKgi + PT

2230A

+ δP T
223A + PT

2230B2Kgi0 + δP T
223B2Kgi0 + PT

2230B2δKgi

− PT
2230LC2 − δP T

223LC2 + P2230D22Kgi0 + δP223D22Kgi0

+ P2230D22δKgi + ksi0B
T
2 P2120 + δksiB

T
2 P2120 + ksi0B

T
2 δP212

+ ksi0D
T
22L

TPT
2220 + δksiD

T
22L

TPT
2220 + ksi0D

T
22L

T δP T
222

+ ksi0D
T
22P

T
2230 + δksiD

T
22P

T
2230 + ksi0D

T
22δP

T
223, (A.19)

Z33 =PT
2130B2ksi0 + δP T

213B2ksi0 + PT
2130B2δksi + PT

2230LD22ksi0

+ δP T
223LD22ksi0 + PT

2230LD22δksi + P2330D22ksi0 + δP233D22ksi0

+ P2330D22δksi + ksi0B
T
2 P2130 + δksiB

T
2 P2130 + ksi0B

T
2 δP213

+ ksi0D
T
22L

TP2230 + δksiD
T
22L

TP2230 + ksi0D
T
22L

T δP223

+ ksi0D
T
22P

T
2330 + δksiD

T
22P

T
2330 + ksi0D

T
22δP

T
233, (A.20)

Z41 =BT
1 PT

2110 + BT
1 δP T

211 + DT
21L

TPT
2120 + DT

21L
T δP T

212 + DT
21P

T
2130

+ DT
21δP

T
213, (A.21)

Z42 =BT
1 P2120 + BT

1 δP212 + DT
21L

TPT
2220 + DT

21L
T δP T

222 + DT
21P

T
2230

+ DT
21δP

T
223, (A.22)

Z43 =BT
1 P2130 + BT

1 δP213 + DT
21L

TP2230 + DT
21L

T δP223 + DT
21P

T
2330

+ DT
21δP

T
233 and (A.23)

Z44 = − I. (A.24)

A.2.2 SSDP Procedure

The following procedure is implemented in designing each controller loop ki(s)
(i = 1, . . . ,m).

Procedure A.2 ([16])

1. Find the initial set of solutions for Kgi0, ksi0, P10, P20 and Q0 using
the method described above.

2. Set the solution radius ε = ε0. It should be set at a small positive
number so that the optimization solver in Step 3 will search in the
small neighbourhood of initial values. Also set convergence tolerance ζ
and the maximum number of iterations η.

3. Check whether the maximum number of iterations has been reached. If
yes, terminate the SSDP procedure and stop.

4. Solve Problem A.1 (the problem with approximated constraints) with
restrictions on the solution radii:

‖δKgi‖ < ε, δksi < ε, ‖δP1‖ < ε, ‖δP2‖ < ε, ‖δQ‖ < ε, (A.25)
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to obtain δKgi, δksi, δP1, δP2 and δQ. Because zero initial values of
decision variables (deviation variables) satisfy all constraints in Prob-
lem A.1, there always exists a feasible solution.

5. Update Kgi = Kgi0 + δKgi and ksi = ksi0 + δksi. Fix Kgi and ksi, and
solve Problem A.1 with the LMIs for P1, P2 and Q. This step provides
the solution of the original BMI problem.
a) If no feasible solution is obtained, the solution radius in Step 4 is

too large and the solution of the approximated problem does not
satisfy the original nonlinear constraints. Reduce the solution ra-
dius by replacing ε with 0.9ε and go to Step 3.

b) If a feasible solution is obtained, there are two scenarios:
i. If Tr(Q) > Tr(Q0), the new solution is less optimal than the

previous solution. Increase the solution radius by replacing ε
with 1.1ε and go to Step 3.

ii. If Tr(Q) < Tr(Q0) with the new solution, a better result is
obtained. Now check for convergence:

A. If |Tr(Q) − Tr(Q0)| < ζ, then an acceptable solution is ob-
tained and proceed to Step 6.

B. Otherwise, set Kgi0 = Kgi, ksi0 = ksi, P10 = P1, P20 = P2

and Q0 = Q. Go to Step 3.
6. Calculate k′

i(s) using (5.52) and the final controller ki(s) is computed
using (5.53).



B

Mathematical Proofs

B.1 Phase Condition for MIMO Systems

To derive the phase condition for MIMO systems, we need to use the concept
of inertia.

Definition B.1 (Inertia of a matrix[91]). For an m×m matrix A, In(A) =
(π, ν, σ) is denoted as its inertia, which means that matrix A has π eigenvalues
with positive real parts, ν eigenvalues with negative real parts and σ purely
imaginary eigenvalues.

Theorem B.2 ([91]). If for an m × m matrix A, (A + A∗) > 0, and H is
Hermitian, then

In(AH) = In(H). (B.1)

Lemma B.3 ([91]). Let A be an m × m matrix and H be Hermitian. If
AH + H∗A∗ is positive definite, then H is nonsingular.

To simplify our proof, let us look at strictly input passive systems.

Theorem B.4 ([13]). Consider an m×m MIMO LTI system with a transfer
function G(s). If the system is strictly passive, then its phase shift lies in the
open interval (−90◦, 90◦) for any real ω.

Proof. If system G(s) is strictly passive, the following inequality holds by
Theorem 2.25:

G(jω) + G∗(jω) = U(jω)H(jω) + H∗(jω)U∗(jω) > 0. (B.2)

From Lemma B.3, the Hermitian matrix H(jω) is nonsingular. Furthermore,
since

λ (H(jω)) = λ (V (jω)Λ(jω)V ∗(jω)) (B.3a)

= λ
(
V (jω)Λ(jω)V −1(jω)

)
= λ (Λ(jω)) , (B.3b)
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P (s)KP (s)

Kg D G(s)1/s

−

+
N−1(0)N(s)

Fig. B.1. Passivity-based DIC [12]

we can conclude that all eigenvalues of H(jω) are positive. Because H−1 is
also a positive definite Hermitian matrix and In

(
H−1(jω)

)
= (m, 0, 0), from

Theorem B.2,

In (U(jω)) = In
(
[U(jω)H(jω)]H−1

)
= In

(
H−1(jω)

)
= (m, 0, 0) , (B.4)

that is, all eigenvalues of U(jω) have positive real parts. Consequently,

arg {λi (U(jω))} ∈ (−90◦, 90◦) (B.5)

for all ω ∈ R, i = 1 . . .m, where the principal argument is defined in
(−180◦, 180◦).

B.2 Proof of Theorem 4.4

Proof ([12]). Consider the system shown in Figure B.1. Assume that a decen-
tralized controller with integral action C(s) is formed by

C(s) = DN−1(0)N(s)Kg/s = DN−1(0)N(s)Kp (s) , (B.6)

where Kg = diag{ki}, ki ≥ 0, ki ∈ R, i = 1 . . .m, Kp (s) = Kg/s;N (s)
is a stable, diagonal system and N(0) is nonsingular. From Definition 2.24,
Kp (s) is positive real. Denote P (s) = G(s)DN−1 (0)N(s). The DIC condition
transforms to a determination of whether the closed-loop system of Kp(s) and
P (s) is stable and remains stable when Kg is reduced to Kgε = diag{kiεi}
(0 ≤ εi ≤ 1, i = 1 . . .m). The stability is proven using the generalized nyquist
stability criterion. Since Kp(s) has nonrepeated poles at the origin (s = 0),
the standard D-contour has to be modified by making a semicircular “detour”
with infinitesimal radius ε (ε → 0) to the right of the origin. Define the points
on the semicircle, the rest of the imaginary axis and the right half circle with
infinite radius as Sε, Si, Sr respectively, where

Sε =
{
s : |s = εejθ, ε ∈ R+, ε → 0, and − π/2 < θ < π/2

}
,

Si =
{
s : |s = jω, ω = (−∞,−ε] ∪ [+ε,+∞), ε ∈ R+, ε → 0

}
and

Sr =
{
s : |s = rejθ , r ∈ R+, r → +∞ and − π/2 < θ < π/2

}
.
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Because both P (s) and Kp(s) do not have RHP poles, the generalized
nyquist stability criterion reduces to the condition that the eigenvalue loci of
P (s)Kp(s) do not encircle s = −1+0j for any s ∈ Sε and for any s ∈ Si ∪Sr .

Because both N (0) and G(0) are nonsingular, if there exists a matrix D
such that (4.11) is satisfied (i.e., P (0)+PT (0) ≥ 0), then P (0) is nonsingular
and

Re [z∗P (0) z] ≥ 0 and Re
[
z∗PT (0) z

] ≥ 0 ∀z �= 0, z ∈ C
m. (B.7)

Proof part A: For any s ∈ Sε,

Kp(s) + K∗
p (s) =

Kg

εejθ
+

KT
g

εe−jθ
=

2Kg cos (θ)
ε

≥ 0. (B.8)

Therefore,

Re (z∗ [Kp(s)] z) = Re
(
z∗
[
K∗

p(s)
]
z
) ≥ 0 ∀ z �= 0, z ∈ C

m and s ∈ Sε.
(B.9)

Since G(s) and N(s) are stable, therefore P (s) is analytic and thus continuous
in Re(s) ≥ 0,

lim
ε→0

P
(
εejθ

)
= P (0) , (B.10)

where −π/2 < θ < π/2. From (B.7), for any s ∈ Sε, P (s) is nonsingular and

Re [z∗P (s)z] = lim
ε→0

Re
[
z∗P (εejθ)z

]
= Re [z∗P (0)z] ≥ 0 for any z �= 0, − π/2 < θ < π/2. (B.11)

If there exists a real eigenvalue λ of P (s)Kp(s), s ∈ Sε, it is also an eigenvalue
of Kp (s)P (s). Assuming that x �= 0 is the eigenvector associated with the
eigenvalue λ of Kp(s)P (s) (i.e., λx = Kp(s)P (s)x),

Re[λx∗P (s)x] = Re[x∗P ∗(s)K∗
p (s)P (s)x]

= Re[y∗K∗
p (s)y], ∀s ∈ Sε, (B.12)

where y = P (s)x �= 0. From (B.9),

Re [λx∗P (s)x] = λRe [x∗P (s)x] = Re[y∗K∗
p(s)y] ≥ 0. (B.13)

From (B.11),
Re [x∗P (s)x] ≥ 0 (B.14)

for the eigenvector x defined in (B.12) and s ∈ Sε.

(a) For the case in which Re [x∗P (s)x] > 0, s ∈ Sε, because the eigenvalue λ
is real, from (B.13),

λ ≥ 0. (B.15)
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(b) For the case in which Re [x∗P (s)x] = 0, it can be derived from (B.12) that

Re[y∗Kp(s)y] = Re[y∗K∗
p (s)y] = 0 for any s ∈ Sε. (B.16)

Recalling Kp (s) = diag {kp,1, . . . , kp,i, . . . , kp,m}, as defined in (B.6) and
y = [y1, . . . yi, . . . , yn]T (where kp,i, yi ∈ C1 ∀ i = 1, . . . ,m),

Re[y∗Kp(s)y] =
m∑

i=1

Re (kp,i) yiyi = 0, (B.17)

where y is the complex conjugate of y.
Inequality B.8 implies that Re (kp,i) ≥ 0, since yiyi is a real number and
yiyi ≥ 0. It can be seen from (B.17) that,

Re (kp,i) = 0 if yiyi �= 0. (B.18)

Because ki ≥ 0, ki ∈ R, and Re
(
εejθ

)
> 0,

kp,i = 0 ∀ kp,i ∈ {kp,i |Re (kp,i) = 0} , i = 1, . . . ,m. (B.19)

Then,
λx = Kp (s)P (s)x = 0, x �= 0. (B.20)

This leads to
λ = 0. (B.21)

Therefore, any real eigenvalue of Kp (s)P (s) is always greater than or
equal to zero. This implies that the eigenvalue locus of P (s)Kp(s) does
not cross the negative real axis and thus does not encircle the critical
point s = −1 + 0j, while s traverses on the semicircle.

Proof part B: For any s ∈ Si ∪ Sr: Since P (s) is analytic in Re (s) ≥ 0 and

P (s)Kp (s) = G(s)DN−1 (0)N(s)Kgs
−1 = G(s)K(s) (B.22)

is proper, there always exists a positive definite diagonal matrix Ks =
diag{ks,i}, ks,i > 0, i = 1 . . .m, with its elements small enough such that
the following condition is satisfied:

max
s∈Si∪Sr

∣∣∣∣λmax

(
P (s)Ks

1
s

)∣∣∣∣ ≤ σmax (P (s)) ksm

∣∣∣∣1s
∣∣∣∣ < 1, (B.23)

where ksm is the maximum element of Ks and σmax (P (s)) denotes the max-
imum singular value of P (s).

Therefore, by choosing any Kg ≥ 0, whose maximum element is less than
ksm, the moduli of the eigenvalues of P (s)Kp(s) are always less than 1 as s
travels on the imaginary axis from −∞ to −ε and from +ε to +∞.

By combining Proof part A and part B, it is concluded that it is always
possible to find a Kg such that the eigenvalue locus of P (s)Kp(s) will never
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encircle the critical point (−1, 0j) when s travels on the D-contour. The closed-
loop stability of P (s) and Kp(s) is concluded.

It is obvious that if Kg is reduced to any positive semidefinite diagonal
matrix,

Kgε = diag{kiεi}, 0 ≤ εi ≤ 1, i = 1 . . .m, (B.24)

the above stability condition is still valid.

B.3 Proof of Theorem 4.8

Proof ([119]). The proof of this theorem is based on singular perturbation
theory [70]. Consider the system of Figure B.2 described by (4.24) and (4.25).
The input signal r is set to zero so that the Lyapunov stability of the unforced
closed loop (P,−Cl) can be analyzed. The state equation for the closed loop
(P,−Cl) can be expressed as

(P,−Cl) :
{

ẋ = f(x, ξ)
ξ̇ = −ηK ′

gεg(x, ξ).
(B.25)

Equation B.25 can be transformed into a standard singular perturbation form
[70]: Let τ = η(t − t0), so that τ = 0 at t = t0. Because dτ

dt = η,

(P,−Cl) :
{

η d
dτ x = f(x, ξ)

d
dτ ξ = −K ′

gεg(x, ξ).
(B.26)

To be consistent with standard singular perturbation notation, we will for
the moment use the notation ẋ to denote the derivative in the slow timescale
τ when we analyse singular perturbation models. For the standard singular
perturbation model (B.26), the following conclusions can be drawn based on
Conditions (i), (ii) and (iii), respectively:
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(i) The equation 0 = f(x, ξ) obtained by setting η = 0 in (B.26) implicitly
defines a unique C2 function x = h(ξ).
(ii) For any fixed ξ ∈ R

m, the equilibrium xe = h(ξ) of the subsystem
ẋ = f(x, ξ) is globally asymptotically stable (GAS) and locally exponentially
stable (LES).
(iii) The equilibrium ξ = 0 of the reduced model (slow timescale)

ξ̇ = −K ′
gεg(h(ξ), ξ) (B.27)

is GAS and LES.
Both conclusions (i) and (ii) are obvious. Only conclusion (iii), the stability
(GAS and LES) of the slow timescale, needs to be proved. Assume that K ′

gε >
0 at first. Consider

V (ξ) =
1
2
ξTK ′−1

gε ξ (B.28)

as a Lyapunov function candidate for the slow timescale. It can be seen that

V̇ (ξ) = −1
2
[
ξTK ′−1

gε K ′
gεg(h(ξ), ξ) + gT (h(ξ), ξ)K ′

gεK
′−1
gε ξ

]
= −gT (h(ξ), ξ)ξ = −ξT g(h(ξ), ξ).

(B.29)

This will satisfy the requirements for GAS and LES, given that

u1
T g(h(u1), u1) > 0 (B.30)

(when u1 �= 0) and
u1

T g(h(u1), u1) ≥ ρ|u1|2 (B.31)

(for some scalar ρ > 0) for u1 in a neighbourhood of u1 = 0. Note that the
GAS and LES of the slow timescale are guaranteed for all

K ′
gε = diag {k′

iεi} = diag
{

kiεi

η

}
, 0 < εi ≤ 1, i = 1, · · · ,m. (B.32)

Now, consider the case that K ′
gε ≥ 0. In this case, some diagonal elements

of K ′
gε are zero and the corresponding controller loops are removed. Without

loss of generality, assume that εj = εl = 0, where 1 ≤ j < l ≤ m. Denote

ξ̄ = [ξ1, · · · , ξj−1, ξj+1, · · · , ξl−1, ξl+1, · · · ξm]T , (B.33)

ξ̃ = [ξ1, · · · , ξj−1, 0, ξj+1, · · · , ξl−1, 0, ξl+1, · · · ξm]T . (B.34)

ḡ(h(ξ̃), ξ̃) =
[
g1

(
h
(
ξ̃
)
, ξ̃
)
, · · · , gj−1

(
h
(
ξ̃
)
, ξ̃
)
, gj+1

(
h
(
ξ̃
)
, ξ̃
)
, · · · ,

gl−1

(
h
(
ξ̃
)
, ξ̃
)

gl+1

(
h
(
ξ̃
)
, ξ̃
)
, · · · , gm

(
h
(
ξ̃
)
, ξ̃
)]T

,

(B.35)

and
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K̄ ′
gε = diag

{
k′
1ε1, · · · , k′

j−1εj−1, k
′
j+1εj+1, · · · , k′

l−1εl−1, k
′
l+1εl+1, · · · , k′

mεm

}
.

(B.36)
Then, the model of slow timescale can be rewritten as

˙̄ξ = −K̄ ′
gεḡ(h(ξ̃), ξ̃). (B.37)

Choose
V̄ (ξ̄) =

1
2
ξ̄T K̄ ′−1

gε ξ̄ (B.38)

as a Lyapunov function candidate for the slow timescale model (B.37), then,

˙̄V (ξ̄) = −ξ̄T ḡ(h(ξ̃), ξ̃). (B.39)

The condition uT
1 g(h(u1), u1) > 0 (when u1 �= 0) implies that

ξ̄T ḡ(h(ξ̃), ξ̃) > 0 (B.40)

(when ξ̄ �= 0), and uT
1 g(h(u1), u1) ≥ ρ|u1|2 (for some scalar ρ > 0) for u1 in a

neighbourhood of u1 = 0 implies that

ξ̄T ḡ(h(ξ̃), ξ̃) ≥ ρ′|ξ̄|2 (B.41)

(for some scalar ρ′ > 0) for ξ̄ in a neighbourhood of ξ̄ = 0. Therefore, GAS and
LES of the slow timescale model (B.37) can be proved. Then, the conclusion
of this theorem follows from Theorem 3.18 in [70].

B.4 Region of Steady-state Attainability

B.4.1 Nominal Stability of Nonlinear IMC

Definition B.5 ([67]). A continuous function υ(u) : [0, a) → [0,∞) is said
to belong to class K if it is strictly increasing and υ(0) = 0.

Definition B.6 ([67]). A continuous function β(x, t) : [0, a) × [0,∞) →
[0,∞) is said to belong to class KL if, for each fixed t, the mapping β(x, t)
belongs to class K with respect to x and, for each fixed x, the mapping β(x, t)
is decreasing with respect to t and β(x, t) → 0 as t → ∞.

Definition B.7 ([67]). Consider the system represented by (6.22) with steady-
state equilibrium (uss, xss, yss). The system is said to be input-to-state stable
if there exist a class KL function β(x, t) and a class K function υ(u) such that
for any initial state x0 ∈ X0 ⊂ Rn and any bounded input u(t) the process
state vector x(t) satisfies

‖x(t) − xss‖ ≤ β(‖x0 − xss‖, t− t0) + υ

(
sup

t0≤τ≤t
‖u(τ) − uss‖

)
. (B.42)
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Based on these definitions, we have the following result:

Theorem B.8 (Stability condition for nonlinear IMC [98]). Consider
the IMC scheme in Figure 6.2, where G, G̃ and Q are nonlinear dynamic
systems. Assume that

1. the process G is input-to-state stable on X0 ⊂ Rn ;
2. xQ ∈ R

q is the state vector of the IMC controller Q. Moreover, Q is
asymptotically stable on XQ ⊂ Rq;

3. for each steady-state operating point (ess, xQss, uss) of Q such that xQss ∈
XQ ,there exists a corresponding steady-state operating point (uss, xss, yss)
of G such that xss ∈ X0;

4. there is no uncertainty in the process model, i.e., G̃ = G;
5. the process G and the model G̃ have the same initial conditions x0 ∈ X0.

Then, the IMC closed loop in Figure 6.2 is asymptotically stable on the
region X � X0 ×XQ (where × stands for the Cartesian product).

Proof. From Conditions 4 and 5, y0(t) = y(t) for all t > 0. Thus, the signal
y(t) − y0(t) fed back to the IMC controller in Figure 6.2 is identically zero.
Then, e(t) = r(t) for all t ≥ 0, hence the IMC closed loop in Figure 6.2 is
given by

y(t) = GQr(t), ∀ t ≥ 0, (B.43)

where GQ denotes the series interconnection of the nonlinear dynamic systems
G and Q. With r(t) = rss constant, Condition 2 implies that

lim
t→∞xQ(t) = xQss,

lim
t→∞u(t) = uss,

(B.44)

for every initial state in XQ ⊂ Rq. From Condition 1, there exist a class KL
function β(x, t) and a class K function υ(u) such that for any initial state
x0 ∈ X0 ⊂ Rn and any bounded input u(t), the process state vector x(t)
satisfies the following condition [67]:

‖x(t) − xss‖ ≤ β(‖x0 − xss‖, t− t0) + υ

[
sup

t0≤τ≤t
‖u(τ) − uss‖

]
(B.45)

where the existence of the process steady-state operating point (uss, xss, yss) is
guaranteed by Condition 3. The above inequality implies that for any bounded
input u(t), the process state vector x(t) will also be bounded. From B.44, we
see that the input u(t) converges asymptotically to the steady-state value uss.
This fact, in conjunction with inequality B.42 and the properties of the class
K function υ(·) and class KL function β(·, ·), implies that the process state
vector x(t) converges asymptotically to xss. We conclude that the IMC closed
loop in B.43 is asymptotically stable in the region X � X0 ×XQ.
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B.4.2 Proof of Theorem 6.6

Proof ([98]). Based on the process nonlinear model in (6.22) and Assump-
tion 1 in Theorem 6.6, the dynamics of the closed loop in Figure 6.6 are
described by the following set of differential equations:⎧⎪⎨⎪⎩

ξ̇ = εK̂ [r�
ss − g(x,C z + Dξ)]

ż = Az + B ξ

ẋ = f(x,C z + D ξ).
(B.46)

We introduce the slow timescale variable τ given by

τ = ε t (B.47)

and rewrite the closed-loop dynamics in (B.46) in terms of τ as follows:⎧⎪⎨⎪⎩
dξ
dτ = K̂ [r�

ss − g(x,C z + D ξ)]
ε dz

dτ = Az + B ξ

εdx
dτ = f(x, C z + D ξ).

(B.48)

The above set of equations are in standard singular perturbation form [70].
We then use singular perturbation analysis to study the asymptotic stability
of the feasible operating point of interest (u�

ss, y
�
ss) where y�

ss = r�
ss. Define

the mapping from ξ to y as y = ϕ (ξ). Note that from Assumptions 3 and
4 in Theorem 6.6, the operating point (u�

ss, y
�
ss) defines a unique operating

point (ξ�
ss, y

�
ss), where y�

ss = ϕ(ξ�
ss). Using singular perturbation analysis, we

let ε → 0 and we restrict the analysis to the slow timescale dynamics of
the closed loop. This is equivalent to a timescale separation approach: By
detuning the controller (when ε → 0), we can separate the “slow” dynamics
of the integrator from the “fast” dynamics (in relative terms) of the controller
and the process. Thus, when ε → 0 the closed-loop dynamics in (B.48) become,⎧⎪⎨⎪⎩

dξ
dτ = K̂ [r�

ss − g(x,C z + D ξ)]
0 = Az + B ξ

0 = f(x,C z + D ξ),
(B.49)

for which we require Assumptions 1 and 2. Next, using Assumptions 3 and 4
we can substitute for the above set of equations the following single equation:

dξ
dτ

= K̂ [r�
ss − ϕ(ξ)] . (B.50)

To study the stability of the above dynamics, we consider the Lyapunov func-
tion candidate

V (ξ) =
1
2

(ξ − ξ�
ss)

T K̂−1 (ξ − ξ�
ss) . (B.51)
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Then,

dV
dτ

=
1
2

[
dξ
dτ

T

K̂−1(ξ − ξ�
ss) + (ξ − ξ�

ss)
T K̂−1 dξ

dτ

]
= − (ξ − ξ�

ss)
T [ϕ(ξ) − r�

ss] ,

(B.52)

where we have used the fact that K̂T = K̂. We conclude that a sufficient
condition that guarantees the asymptotic stability of the equilibrium point
(ξ�

ss, y
�
ss) in the slow timescale domain is that (ξ − ξ�

ss)
T (y − y�

ss) > 0 for every
closed-loop trajectory ξ(τ). The existence of ε0 > 0 such that the singular
perturbation analysis can be applied for all 0 < ε ≤ ε0 is guaranteed by
Theorem 3.18 on page 90 of Sepulchre et al. [110].

B.4.3 Positive Invariance of Region of Attraction

Proposition B.9 ([98]). The steady-state region of attraction under linear
feedback control Ωu(u�

ss) in Definition 6.7 is positively invariant with respect
to u(t) for all 0 < ε ≤ ε0. In addition, every closed-loop trajectory starting
from a steady-state initial condition (uss, yss), such that uss ∈ Ωu(u�

ss), will
converge to the feasible operating point (u�

ss, y
�
ss).

Proof. The steady-state region of attraction under linear feedback control
Ωu(u�

ss) is given by the largest ellipsoid Π
(
K̂, γ, u�

ss

)
in the u-space that

is completely contained in the AIS and in the region Λu. Using the linear
relation u = K̄ξ, we can express the ellipsoid Π

(
K̂, γ, u�

ss

)
in terms of ξ in

the ξ-space as follows:

Π
(
K̂, γ, ξ�

ss

)
�
{
ξ ∈ R

m | (ξ − ξ�
ss)

T K̂−1(ξ − ξ�
ss) ≤ γ

}
. (B.53)

We see that the above ellipsoid is defined based on the Lyapunov function V (ξ)
in (B.51). Given K̂ = K̂T > 0 and γ > 0, V (ξ) ≤ γ/2 defines the same ellip-
soid given by Π

(
K̂, γ, ξ�

ss

)
in (B.53). From Definition 6.7, K̂ and γ are such

that Π
(
K̂, γ, ξ�

ss

)
is the largest ellipsoid completely contained in the region

Λξ where Condition (6.30) of Theorem 6.6 holds. Thus, V (ξ) ≤ γ/2 (therefore
also Ωu(u�

ss)) is positively invariant since dV
dτ < 0 for every closed-loop tra-

jectory ξ(τ) originating in V (ξ) ≤ γ/2. In addition, the result in Theorem 6.6
guarantees that the closed-loop trajectory ξ(τ) will asymptotically converge
to the feasible operating point (ξ�

ss, ϕ(ξ�
ss)).

B.4.4 Proof of Theorem 6.10

Proof. This proof is an extension of [98]. From the Proof of Theorem 6.6 we
have that the slow timescale dynamics of the closed loop in Figure 6.6 are
given by
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dξ
dτ

= K̂ [y′ss − ϕ(ξ)] , (B.54)

where the reference signal is r(t) = y′ss constant. Differentiating the error
signal ẽ = r − y, we obtain

dẽ
dτ

= −∂ϕ

∂ξ

dξ
dτ

, (B.55)

since y = ϕ(ξ). Substituting (B.54),

dẽ
dτ

= −∂ϕ

∂ξ
K̂ [y′ss − ϕ(ξ)] = −∂ϕ

∂ξ
K̂ ẽ. (B.56)

Next we show that the equilibrium point ẽ = 0 is asymptotically stable.
Because K̂ = K̂T > 0, we can adopt the following Lyapunov function:

V (ẽ) =
1
2
ẽT K̂ẽ. (B.57)

Hence,

dV
dτ

= −ẽT K̂T ∂ϕ

∂ξ
K̂ ẽ

= −ẽT K̂T ∂h

∂u
K̄ K̂ ẽ. (B.58)

Because K̂ is nonsingular, we conclude that dV
dτ < 0 if and only if

∂h

∂u
K̄ > 0. (B.59)

If there exists a non-empty region Θu ⊂ Rm in the input space such that the
above condition is satisfied for every closed-loop trajectory, then the equilib-
rium ẽ = 0 is asymptotically stable.
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balance equations
input convection term, 201
output convection term, 201
overall mass, 201
source term, 201
transfer term, 201

balance volumes, 200
basic modelling assumptions, 207
BDIC

see block decentralized integral
controllability, 104

block decentralized integral controlla-
bility, 103, 104

necessary condition, 107
sufficient condition, 105

blocking zeros, 150
bounded-real lemma, 64

Cayley transformation, 61, 74
conserved extensive variables, 200
constitutive equations

extensive-intensive relationship, 202
physicochemical property relations,

203
reaction rate expression, 202
source equations, 202
thermodynamic state equations, 203
transfer rate equations, 202

controllability, 15
dynamic controllability, 161
input-output controllability, 161

controllability analysis
nonlinear processes, 181, 187
stable linear systems, 166

steady-state attainability, 171, 179,
181, 184, 185

steady-state attainability via linear
feedback control, 173

steady-state output space achievable,
178, 180

steady-state region of attraction, 172,
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costate variables, 212

decentralized control, 89
achievable performance, 116
control design based on passivity, 120
stability condition, 115

decentralized detunability
see decentralized unconditional

stability, 126
decentralized integral controllability, 91

linear systems, 92
necessary condition, 92
passivity-based condition, 94, 95
passivity-based condition for

nonlinear systems, 98–100
sufficent condition, 92

decentralized unconditional stability,
126, 128

pairing schemes, 132
passivity-based condition, 128

DIC
see decentralized integral controllabil-

ity, 91
dissipation matrix, 214
dissipative systems, 9

available storage, 10
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examples, 7
storage function, 9
supply rate, 9, 27

dynamic interaction measure, 110, 111
PB-IM, 112, 114
SB-IM, 115
SSV-IM, 112

engineering intensive variables, 201
entropic intensive variables, 196
entropy-based storage function, 208

choice of inputs and outputs, 210
generalized, 208
properties, 209

Euler equation, 197
extensive variables, 194

canonical set, 194
conserved, 200
entropy, 194
relation with the intensive ones, 199

extensive-intensive relationship, 199,
201

fault-tolerant control, 125
H2 control, 139–141, 143, 145
H∞ control, 146
failure modes and effects analysis, 156
fault accommodation, 159
fault detection, 157, 158
hybrid approach, 156, 159
PI control, 135
unstable processes, 149, 150, 152, 153
virtual sensor, 159

first law of thermodynamics, 197
FTC

see fault-tolerant control, 125

Hamiltonian function, 213
Hamiltonian storage function, 213
Hamiltonian systems, 212

generalized, 213
states and costates, 212
with dissipation, 214

intensive variables, 195
driving forces, 196
engineering, 201
entropic, 196
mass specific extensive, 201

pressure, 195
relation with the extensive ones, 199
temperature, 195

internal model control, 164
extended IMC, 166

KYP lemma
see positive-real lemma, 14

KYP property, 13

laws of thermodynamics, 197
first, 197
second, 198

Lie derivative, 13
local thermodynamic equilibrium, 198
lossless systems, 213

mechanisms, 201
convection, 201
transfer, 201

minimum phase systems, 20

nonequilibrium thermodynamics, 198
Onsager relation, 198

Onsager relation, 198
engineering version, 202

passivation
input feedforward passivation, 29
output feedback passivation, 30

passive systems, 10
examples, 7, 36
interconnection, 21
lossless systems, 11
output feedback stability, 21
partial interconnection, 22
phase condition, 18, 20
stability, 12
state strictly passive systems, 11

passivity
excess, 25
incremental input passivity, 179
incrementally strict input passivity,

179
shortage, 25

passivity index, 24
diagonal scaling, 113, 114, 130, 131
frequency-dependent IFP, 28
frequency-dependent OFP, 29
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IFP, 24–26
IFP of linear systems, 28
OFP, 25, 26
OFP of linear systems, 29

passivity theorem, 32, 35
linear version, 34

passivity-based stability condition, 32,
34, 35

positive real systems, 15
linear extended strictly positive real

systems, 17
linear positive real systems, 17
linear strictly positive real systems,

17
positive real over a frequency band,

70
positive-real lemma, 14
process modelling

balance volumes, 200
conservation balances, 201
mechanisms, 201
overall mass balance, 201

reachability, 15
relative degree, 19
robust control, 56

nominal performance, 57, 75
passive controller design, 80, 85
passivity-based control design, 59, 64,

73, 74, 77
passivity-based stability condition, 56

robust stability, 46
passivity and gain condition, 70, 72
passivity-based condition, 50, 56
small gain condition, 46

second law of thermodynamics, 198
sector, 52

properties, 53
sector stability condition, 53

signal norm, 15
space

L2e space, 16

L2 space, 16
stability

asymptotic stability, 6
exponential stability, 7
global stability, 6
input-output stability, 16
locally exponential stability, 7
Lyapunov stability, 6
stability criterion, 6

state equations, 203
intensive form, 203, 210
structure, 204

static feedback stabilizability, 150
storage function, 207

entropy-based, 208
entropy-based, generalized, 208

thermodynamic driving forces, 196
thermodynamics, 194

entropic intensive variables, 196
equations of state, 196
equilibrium, 198
extensive variables, 194
fundamental equation, 195
intensive variables, 195
nonequilibrium, 198
postulates, 194

uncertainty, 44
additive uncertainty, 44
IFP bound, 48, 49
multiplicative uncertainty, 45
parameter uncertainty, 44
passivity-based uncertainty measure,

48, 49, 70
sector bounded passivity measure,

53–55
simultaneous IFP OFP bounds, 51
unstructured uncertainty, 44

zero dynamics, 19
zero-state detectability, 12
zero-state observability, 12
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